Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval4 Structured version   Visualization version   GIF version

Theorem trlval4 37326
Description: The value of the trace of a lattice translation in terms of 2 atoms. (Contributed by NM, 3-May-2013.)
Hypotheses
Ref Expression
trlval3.l = (le‘𝐾)
trlval3.j = (join‘𝐾)
trlval3.m = (meet‘𝐾)
trlval3.a 𝐴 = (Atoms‘𝐾)
trlval3.h 𝐻 = (LHyp‘𝐾)
trlval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlval4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))

Proof of Theorem trlval4
StepHypRef Expression
1 simp1 1132 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21 1202 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → 𝐹𝑇)
3 simp22 1203 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp23 1204 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5 simp3r 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → ¬ (𝑅𝐹) (𝑃 𝑄))
6 simpl1l 1220 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝐾 ∈ HL)
7 simp23l 1290 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → 𝑄𝐴)
87adantr 483 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑄𝐴)
9 simpl1 1187 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 simpl21 1247 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝐹𝑇)
11 trlval3.l . . . . . . . . . 10 = (le‘𝐾)
12 trlval3.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
13 trlval3.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
14 trlval3.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
1511, 12, 13, 14ltrnat 37278 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄𝐴) → (𝐹𝑄) ∈ 𝐴)
169, 10, 8, 15syl3anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝐹𝑄) ∈ 𝐴)
17 trlval3.j . . . . . . . . 9 = (join‘𝐾)
1811, 17, 12hlatlej1 36513 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝐹𝑄) ∈ 𝐴) → 𝑄 (𝑄 (𝐹𝑄)))
196, 8, 16, 18syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑄 (𝑄 (𝐹𝑄)))
20 simpl22 1248 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
21 trlval3.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
2211, 17, 12, 13, 14, 21trljat1 37304 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐹)) = (𝑃 (𝐹𝑃)))
239, 10, 20, 22syl3anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑃 (𝑅𝐹)) = (𝑃 (𝐹𝑃)))
24 simpr 487 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄)))
2523, 24eqtrd 2858 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑃 (𝑅𝐹)) = (𝑄 (𝐹𝑄)))
2619, 25breqtrrd 5096 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑄 (𝑃 (𝑅𝐹)))
27 simpl3r 1225 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → ¬ (𝑅𝐹) (𝑃 𝑄))
28 simpll1 1208 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2920adantr 483 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3010adantr 483 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → 𝐹𝑇)
31 simpr 487 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑃) = 𝑃)
32 eqid 2823 . . . . . . . . . . . . . 14 (0.‘𝐾) = (0.‘𝐾)
3311, 32, 12, 13, 14, 21trl0 37308 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = (0.‘𝐾))
3428, 29, 30, 31, 33syl112anc 1370 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) = (0.‘𝐾))
35 hlatl 36498 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
366, 35syl 17 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝐾 ∈ AtLat)
37 simp22l 1288 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → 𝑃𝐴)
3837adantr 483 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑃𝐴)
39 eqid 2823 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
4039, 17, 12hlatjcl 36505 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
416, 38, 8, 40syl3anc 1367 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
4239, 11, 32atl0le 36442 . . . . . . . . . . . . . 14 ((𝐾 ∈ AtLat ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (0.‘𝐾) (𝑃 𝑄))
4336, 41, 42syl2anc 586 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (0.‘𝐾) (𝑃 𝑄))
4443adantr 483 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (0.‘𝐾) (𝑃 𝑄))
4534, 44eqbrtrd 5090 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) (𝑃 𝑄))
4645ex 415 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → ((𝐹𝑃) = 𝑃 → (𝑅𝐹) (𝑃 𝑄)))
4746necon3bd 3032 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (¬ (𝑅𝐹) (𝑃 𝑄) → (𝐹𝑃) ≠ 𝑃))
4827, 47mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝐹𝑃) ≠ 𝑃)
4911, 12, 13, 14, 21trlat 37307 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
509, 20, 10, 48, 49syl112anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑅𝐹) ∈ 𝐴)
51 simpl3l 1224 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑃𝑄)
5251necomd 3073 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑄𝑃)
5311, 17, 12hlatexch1 36533 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑅𝐹) ∈ 𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 (𝑅𝐹)) → (𝑅𝐹) (𝑃 𝑄)))
546, 8, 50, 38, 52, 53syl131anc 1379 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑄 (𝑃 (𝑅𝐹)) → (𝑅𝐹) (𝑃 𝑄)))
5526, 54mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑅𝐹) (𝑃 𝑄))
5655ex 415 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → ((𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄)) → (𝑅𝐹) (𝑃 𝑄)))
5756necon3bd 3032 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (¬ (𝑅𝐹) (𝑃 𝑄) → (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄))))
585, 57mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))
59 trlval3.m . . 3 = (meet‘𝐾)
6011, 17, 59, 12, 13, 14, 21trlval3 37325 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
611, 2, 3, 4, 58, 60syl113anc 1378 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  lecple 16574  joincjn 17556  meetcmee 17557  0.cp0 17649  Atomscatm 36401  AtLatcal 36402  HLchlt 36488  LHypclh 37122  LTrncltrn 37239  trLctrl 37296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-map 8410  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297
This theorem is referenced by:  cdlemg10a  37778  cdlemg12d  37784
  Copyright terms: Public domain W3C validator