Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tron Structured version   Visualization version   GIF version

Theorem tron 5734
 Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.)
Assertion
Ref Expression
tron Tr On

Proof of Theorem tron
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr3 4747 . 2 (Tr On ↔ ∀𝑥 ∈ On 𝑥 ⊆ On)
2 vex 3198 . . . . . . 7 𝑥 ∈ V
32elon 5720 . . . . . 6 (𝑥 ∈ On ↔ Ord 𝑥)
4 ordelord 5733 . . . . . 6 ((Ord 𝑥𝑦𝑥) → Ord 𝑦)
53, 4sylanb 489 . . . . 5 ((𝑥 ∈ On ∧ 𝑦𝑥) → Ord 𝑦)
65ex 450 . . . 4 (𝑥 ∈ On → (𝑦𝑥 → Ord 𝑦))
7 vex 3198 . . . . 5 𝑦 ∈ V
87elon 5720 . . . 4 (𝑦 ∈ On ↔ Ord 𝑦)
96, 8syl6ibr 242 . . 3 (𝑥 ∈ On → (𝑦𝑥𝑦 ∈ On))
109ssrdv 3601 . 2 (𝑥 ∈ On → 𝑥 ⊆ On)
111, 10mprgbir 2924 1 Tr On
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 1988   ⊆ wss 3567  Tr wtr 4743  Ord word 5710  Oncon0 5711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-tr 4744  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-ord 5714  df-on 5715 This theorem is referenced by:  ordon  6967  onuninsuci  7025  gruina  9625
 Copyright terms: Public domain W3C validator