Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredmintr Structured version   Visualization version   GIF version

Theorem trpredmintr 32967
Description: The transitive predecessors form the smallest class transitive in 𝑅 and 𝐴. That is, if 𝐵 is another 𝑅, 𝐴 transitive class containing Pred(𝑅, 𝐴, 𝑋), then TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐵 (Contributed by Scott Fenton, 25-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredmintr (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅   𝑦,𝑋

Proof of Theorem trpredmintr
Dummy variables 𝑎 𝑐 𝑑 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrpred2 32955 . 2 TrPred(𝑅, 𝐴, 𝑋) = 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)
2 fveq2 6663 . . . . . . . 8 (𝑗 = ∅ → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅))
32sseq1d 3995 . . . . . . 7 (𝑗 = ∅ → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆ 𝐵))
43imbi2d 342 . . . . . 6 (𝑗 = ∅ → ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆ 𝐵)))
5 fveq2 6663 . . . . . . . 8 (𝑗 = 𝑘 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘))
65sseq1d 3995 . . . . . . 7 (𝑗 = 𝑘 → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵))
76imbi2d 342 . . . . . 6 (𝑗 = 𝑘 → ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)))
8 fveq2 6663 . . . . . . . 8 (𝑗 = suc 𝑘 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘))
98sseq1d 3995 . . . . . . 7 (𝑗 = suc 𝑘 → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵))
109imbi2d 342 . . . . . 6 (𝑗 = suc 𝑘 → ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵)))
11 fveq2 6663 . . . . . . . 8 (𝑗 = 𝑖 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
1211sseq1d 3995 . . . . . . 7 (𝑗 = 𝑖 → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵))
1312imbi2d 342 . . . . . 6 (𝑗 = 𝑖 → ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵)))
14 setlikespec 6162 . . . . . . . . 9 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
15 fr0g 8060 . . . . . . . . 9 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
1614, 15syl 17 . . . . . . . 8 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
1716adantr 481 . . . . . . 7 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) = Pred(𝑅, 𝐴, 𝑋))
18 simprr 769 . . . . . . 7 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)
1917, 18eqsstrd 4002 . . . . . 6 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆ 𝐵)
20 fvex 6676 . . . . . . . . . . 11 ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ∈ V
21 trpredlem1 32963 . . . . . . . . . . . . . . . 16 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐴)
2214, 21syl 17 . . . . . . . . . . . . . . 15 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐴)
2322sseld 3963 . . . . . . . . . . . . . 14 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → 𝑦𝐴))
24 setlikespec 6162 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑦) ∈ V)
2524expcom 414 . . . . . . . . . . . . . . 15 (𝑅 Se 𝐴 → (𝑦𝐴 → Pred(𝑅, 𝐴, 𝑦) ∈ V))
2625adantl 482 . . . . . . . . . . . . . 14 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦𝐴 → Pred(𝑅, 𝐴, 𝑦) ∈ V))
2723, 26syld 47 . . . . . . . . . . . . 13 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → Pred(𝑅, 𝐴, 𝑦) ∈ V))
2827ralrimiv 3178 . . . . . . . . . . . 12 ((𝑋𝐴𝑅 Se 𝐴) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V)
2928ad2antrr 722 . . . . . . . . . . 11 ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V)
30 iunexg 7653 . . . . . . . . . . 11 ((((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ∈ V ∧ ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V) → 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V)
3120, 29, 30sylancr 587 . . . . . . . . . 10 ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V)
32 nfcv 2974 . . . . . . . . . . 11 𝑎Pred(𝑅, 𝐴, 𝑋)
33 nfcv 2974 . . . . . . . . . . 11 𝑎𝑘
34 nfcv 2974 . . . . . . . . . . 11 𝑎 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦)
35 eqid 2818 . . . . . . . . . . 11 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
36 predeq3 6145 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑑 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑑))
3736cbviunv 4956 . . . . . . . . . . . . . . . . 17 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑑𝑎 Pred(𝑅, 𝐴, 𝑑)
38 iuneq1 4926 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑐 𝑑𝑎 Pred(𝑅, 𝐴, 𝑑) = 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑))
3937, 38syl5eq 2865 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑐 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑))
4039cbvmptv 5160 . . . . . . . . . . . . . . 15 (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑))
41 rdgeq1 8036 . . . . . . . . . . . . . . 15 ((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)) → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)))
42 reseq1 5840 . . . . . . . . . . . . . . 15 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) → (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω))
4340, 41, 42mp2b 10 . . . . . . . . . . . . . 14 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
4443fveq1i 6664 . . . . . . . . . . . . 13 ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) = ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)
4544eqeq2i 2831 . . . . . . . . . . . 12 (𝑎 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ↔ 𝑎 = ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘))
46 iuneq1 4926 . . . . . . . . . . . 12 (𝑎 = ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦))
4745, 46sylbi 218 . . . . . . . . . . 11 (𝑎 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦))
4832, 33, 34, 35, 47frsucmpt 8062 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) = 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦))
4931, 48sylan2 592 . . . . . . . . 9 ((𝑘 ∈ ω ∧ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) = 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦))
5044sseq1i 3992 . . . . . . . . . . . 12 (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵 ↔ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)
5150anbi2i 622 . . . . . . . . . . 11 ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) ↔ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵))
52 nfv 1906 . . . . . . . . . . . . . . 15 𝑦(𝑋𝐴𝑅 Se 𝐴)
53 nfra1 3216 . . . . . . . . . . . . . . . 16 𝑦𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵
54 nfv 1906 . . . . . . . . . . . . . . . 16 𝑦Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵
5553, 54nfan 1891 . . . . . . . . . . . . . . 15 𝑦(∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)
5652, 55nfan 1891 . . . . . . . . . . . . . 14 𝑦((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵))
57 nfv 1906 . . . . . . . . . . . . . 14 𝑦((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵
5856, 57nfan 1891 . . . . . . . . . . . . 13 𝑦(((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)
59 ssel 3958 . . . . . . . . . . . . . 14 (((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵 → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → 𝑦𝐵))
60 rsp 3202 . . . . . . . . . . . . . . 15 (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → (𝑦𝐵 → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵))
6160ad2antrl 724 . . . . . . . . . . . . . 14 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → (𝑦𝐵 → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵))
6259, 61sylan9r 509 . . . . . . . . . . . . 13 ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵))
6358, 62ralrimi 3213 . . . . . . . . . . . 12 ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
6463adantl 482 . . . . . . . . . . 11 ((𝑘 ∈ ω ∧ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
6551, 64sylan2b 593 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
66 iunss 4960 . . . . . . . . . 10 ( 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ↔ ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
6765, 66sylibr 235 . . . . . . . . 9 ((𝑘 ∈ ω ∧ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → 𝑦 ∈ ((rec((𝑐 ∈ V ↦ 𝑑𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
6849, 67eqsstrd 4002 . . . . . . . 8 ((𝑘 ∈ ω ∧ (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵)
6968exp32 421 . . . . . . 7 (𝑘 ∈ ω → (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → (((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵)))
7069a2d 29 . . . . . 6 (𝑘 ∈ ω → ((((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵)))
714, 7, 10, 13, 19, 70finds 7597 . . . . 5 (𝑖 ∈ ω → (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵))
7271com12 32 . . . 4 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → (𝑖 ∈ ω → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵))
7372ralrimiv 3178 . . 3 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ∀𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵)
74 iunss 4960 . . 3 ( 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵 ↔ ∀𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵)
7573, 74sylibr 235 . 2 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵)
761, 75eqsstrid 4012 1 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑦𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  wss 3933  c0 4288   ciun 4910  cmpt 5137   Se wse 5505  cres 5550  Predcpred 6140  suc csuc 6186  cfv 6348  ωcom 7569  reccrdg 8034  TrPredctrpred 32953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-trpred 32954
This theorem is referenced by:  trpredelss  32968  dftrpred3g  32969  trpredpo  32971
  Copyright terms: Public domain W3C validator