MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trsuc Structured version   Visualization version   GIF version

Theorem trsuc 5798
Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
trsuc ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem trsuc
StepHypRef Expression
1 trel 4750 . 2 (Tr 𝐴 → ((𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵𝐴))
2 sssucid 5790 . . . . 5 𝐵 ⊆ suc 𝐵
3 ssexg 4795 . . . . 5 ((𝐵 ⊆ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐵 ∈ V)
42, 3mpan 705 . . . 4 (suc 𝐵𝐴𝐵 ∈ V)
5 sucidg 5791 . . . 4 (𝐵 ∈ V → 𝐵 ∈ suc 𝐵)
64, 5syl 17 . . 3 (suc 𝐵𝐴𝐵 ∈ suc 𝐵)
76ancri 574 . 2 (suc 𝐵𝐴 → (𝐵 ∈ suc 𝐵 ∧ suc 𝐵𝐴))
81, 7impel 485 1 ((Tr 𝐴 ∧ suc 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1988  Vcvv 3195  wss 3567  Tr wtr 4743  suc csuc 5713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-v 3197  df-un 3572  df-in 3574  df-ss 3581  df-sn 4169  df-uni 4428  df-tr 4744  df-suc 5717
This theorem is referenced by:  onuninsuci  7025  limsuc  7034  tz7.44-2  7488  cantnflt  8554  cantnfp1lem3  8562  cantnflem1b  8568  cantnflem1  8571  cnfcom  8582  axdc3lem2  9258  inar1  9582  bnj967  30989  limsuc2  37430
  Copyright terms: Public domain W3C validator