MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  truanfal Structured version   Visualization version   GIF version

Theorem truanfal 1497
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
truanfal ((⊤ ∧ ⊥) ↔ ⊥)

Proof of Theorem truanfal
StepHypRef Expression
1 truan 1491 1 ((⊤ ∧ ⊥) ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382  wtru 1475  wfal 1479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195  df-an 384  df-tru 1477
This theorem is referenced by:  trunanfal  1515
  Copyright terms: Public domain W3C validator