MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  truimfal Structured version   Visualization version   GIF version

Theorem truimfal 1512
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
truimfal ((⊤ → ⊥) ↔ ⊥)

Proof of Theorem truimfal
StepHypRef Expression
1 trut 1489 . 2 (⊥ ↔ (⊤ → ⊥))
21bicomi 214 1 ((⊤ → ⊥) ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wtru 1481  wfal 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-tru 1483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator