MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  truxorfal Structured version   Visualization version   GIF version

Theorem truxorfal 1569
Description: A identity. (Contributed by David A. Wheeler, 8-May-2015.)
Assertion
Ref Expression
truxorfal ((⊤ ⊻ ⊥) ↔ ⊤)

Proof of Theorem truxorfal
StepHypRef Expression
1 df-xor 1505 . . 3 ((⊤ ⊻ ⊥) ↔ ¬ (⊤ ↔ ⊥))
2 trubifal 1562 . . 3 ((⊤ ↔ ⊥) ↔ ⊥)
31, 2xchbinx 323 . 2 ((⊤ ⊻ ⊥) ↔ ¬ ⊥)
4 notfal 1559 . 2 (¬ ⊥ ↔ ⊤)
53, 4bitri 264 1 ((⊤ ⊻ ⊥) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wxo 1504  wtru 1524  wfal 1528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-xor 1505  df-tru 1526  df-fal 1529
This theorem is referenced by:  falxortru  1570
  Copyright terms: Public domain W3C validator