Mathbox for Giovanni Mascellani < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ts3an1 Structured version   Visualization version   GIF version

Theorem ts3an1 34189
 Description: A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.)
Assertion
Ref Expression
ts3an1 (𝜃 → ((¬ (𝜑𝜓) ∨ ¬ 𝜒) ∨ (𝜑𝜓𝜒)))

Proof of Theorem ts3an1
StepHypRef Expression
1 tsan1 34180 . 2 (𝜃 → ((¬ (𝜑𝜓) ∨ ¬ 𝜒) ∨ ((𝜑𝜓) ∧ 𝜒)))
2 df-3an 1074 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
32orbi2i 542 . 2 (((¬ (𝜑𝜓) ∨ ¬ 𝜒) ∨ (𝜑𝜓𝜒)) ↔ ((¬ (𝜑𝜓) ∨ ¬ 𝜒) ∨ ((𝜑𝜓) ∧ 𝜒)))
41, 3sylibr 224 1 (𝜃 → ((¬ (𝜑𝜓) ∨ ¬ 𝜒) ∨ (𝜑𝜓𝜒)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1072 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator