MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsk1 Structured version   Visualization version   GIF version

Theorem tsk1 10178
Description: One is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.)
Assertion
Ref Expression
tsk1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o𝑇)

Proof of Theorem tsk1
StepHypRef Expression
1 df1o2 8108 . 2 1o = {∅}
2 tsk0 10177 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇)
3 tsksn 10174 . . 3 ((𝑇 ∈ Tarski ∧ ∅ ∈ 𝑇) → {∅} ∈ 𝑇)
42, 3syldan 593 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → {∅} ∈ 𝑇)
51, 4eqeltrid 2915 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1o𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2108  wne 3014  c0 4289  {csn 4559  1oc1o 8087  Tarskictsk 10162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-pow 5257
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-br 5058  df-suc 6190  df-1o 8094  df-tsk 10163
This theorem is referenced by:  tsk2  10179
  Copyright terms: Public domain W3C validator