![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsk2 | Structured version Visualization version GIF version |
Description: Two is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tsk2 | ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2𝑜 ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsk1 9770 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 1𝑜 ∈ 𝑇) | |
2 | df-2o 7722 | . . 3 ⊢ 2𝑜 = suc 1𝑜 | |
3 | 1on 7728 | . . . 4 ⊢ 1𝑜 ∈ On | |
4 | tsksuc 9768 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ 1𝑜 ∈ On ∧ 1𝑜 ∈ 𝑇) → suc 1𝑜 ∈ 𝑇) | |
5 | 3, 4 | mp3an2 1553 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 1𝑜 ∈ 𝑇) → suc 1𝑜 ∈ 𝑇) |
6 | 2, 5 | syl5eqel 2835 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 1𝑜 ∈ 𝑇) → 2𝑜 ∈ 𝑇) |
7 | 1, 6 | syldan 488 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 2𝑜 ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2131 ≠ wne 2924 ∅c0 4050 Oncon0 5876 suc csuc 5878 1𝑜c1o 7714 2𝑜c2o 7715 Tarskictsk 9754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-tr 4897 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-ord 5879 df-on 5880 df-suc 5882 df-1o 7721 df-2o 7722 df-tsk 9755 |
This theorem is referenced by: 2domtsk 9772 |
Copyright terms: Public domain | W3C validator |