MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskcard Structured version   Visualization version   GIF version

Theorem tskcard 9550
Description: An even more direct relationship than r1tskina 9551 to get an inaccessible cardinal out of a Tarski class: the size of any nonempty Tarski class is an inaccessible cardinal. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
tskcard ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ∈ Inacc)

Proof of Theorem tskcard
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardeq0 9321 . . . 4 (𝑇 ∈ Tarski → ((card‘𝑇) = ∅ ↔ 𝑇 = ∅))
21necon3bid 2834 . . 3 (𝑇 ∈ Tarski → ((card‘𝑇) ≠ ∅ ↔ 𝑇 ≠ ∅))
32biimpar 502 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ≠ ∅)
4 eqid 2621 . . . . . 6 (𝑧 ∈ (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)})) ↦ (har‘(𝑤𝑧))) = (𝑧 ∈ (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)})) ↦ (har‘(𝑤𝑧)))
54pwcfsdom 9352 . . . . 5 (ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}) ≺ ((ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}) ↑𝑚 (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)})))
6 vpwex 4811 . . . . . . . . . . . 12 𝒫 𝑥 ∈ V
76canth2 8060 . . . . . . . . . . 11 𝒫 𝑥 ≺ 𝒫 𝒫 𝑥
8 simpl 473 . . . . . . . . . . . . 13 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝑇 ∈ Tarski)
9 cardon 8717 . . . . . . . . . . . . . . . . 17 (card‘𝑇) ∈ On
109oneli 5796 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (card‘𝑇) → 𝑥 ∈ On)
1110adantl 482 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝑥 ∈ On)
12 cardsdomelir 8746 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (card‘𝑇) → 𝑥𝑇)
1312adantl 482 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝑥𝑇)
14 tskord 9549 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ On ∧ 𝑥𝑇) → 𝑥𝑇)
158, 11, 13, 14syl3anc 1323 . . . . . . . . . . . . . 14 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝑥𝑇)
16 tskpw 9522 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
17 tskpwss 9521 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Tarski ∧ 𝒫 𝑥𝑇) → 𝒫 𝒫 𝑥𝑇)
1816, 17syldan 487 . . . . . . . . . . . . . 14 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝒫 𝒫 𝑥𝑇)
1915, 18syldan 487 . . . . . . . . . . . . 13 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝒫 𝒫 𝑥𝑇)
20 ssdomg 7948 . . . . . . . . . . . . 13 (𝑇 ∈ Tarski → (𝒫 𝒫 𝑥𝑇 → 𝒫 𝒫 𝑥𝑇))
218, 19, 20sylc 65 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝒫 𝒫 𝑥𝑇)
22 cardidg 9317 . . . . . . . . . . . . . 14 (𝑇 ∈ Tarski → (card‘𝑇) ≈ 𝑇)
2322ensymd 7954 . . . . . . . . . . . . 13 (𝑇 ∈ Tarski → 𝑇 ≈ (card‘𝑇))
2423adantr 481 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝑇 ≈ (card‘𝑇))
25 domentr 7962 . . . . . . . . . . . 12 ((𝒫 𝒫 𝑥𝑇𝑇 ≈ (card‘𝑇)) → 𝒫 𝒫 𝑥 ≼ (card‘𝑇))
2621, 24, 25syl2anc 692 . . . . . . . . . . 11 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝒫 𝒫 𝑥 ≼ (card‘𝑇))
27 sdomdomtr 8040 . . . . . . . . . . 11 ((𝒫 𝑥 ≺ 𝒫 𝒫 𝑥 ∧ 𝒫 𝒫 𝑥 ≼ (card‘𝑇)) → 𝒫 𝑥 ≺ (card‘𝑇))
287, 26, 27sylancr 694 . . . . . . . . . 10 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝒫 𝑥 ≺ (card‘𝑇))
2928ralrimiva 2960 . . . . . . . . 9 (𝑇 ∈ Tarski → ∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇))
3029adantr 481 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇))
31 inawinalem 9458 . . . . . . . . . 10 ((card‘𝑇) ∈ On → (∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇) → ∀𝑥 ∈ (card‘𝑇)∃𝑦 ∈ (card‘𝑇)𝑥𝑦))
329, 31ax-mp 5 . . . . . . . . 9 (∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇) → ∀𝑥 ∈ (card‘𝑇)∃𝑦 ∈ (card‘𝑇)𝑥𝑦)
33 winainflem 9462 . . . . . . . . . 10 (((card‘𝑇) ≠ ∅ ∧ (card‘𝑇) ∈ On ∧ ∀𝑥 ∈ (card‘𝑇)∃𝑦 ∈ (card‘𝑇)𝑥𝑦) → ω ⊆ (card‘𝑇))
349, 33mp3an2 1409 . . . . . . . . 9 (((card‘𝑇) ≠ ∅ ∧ ∀𝑥 ∈ (card‘𝑇)∃𝑦 ∈ (card‘𝑇)𝑥𝑦) → ω ⊆ (card‘𝑇))
3532, 34sylan2 491 . . . . . . . 8 (((card‘𝑇) ≠ ∅ ∧ ∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇)) → ω ⊆ (card‘𝑇))
363, 30, 35syl2anc 692 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ⊆ (card‘𝑇))
37 cardidm 8732 . . . . . . 7 (card‘(card‘𝑇)) = (card‘𝑇)
38 cardaleph 8859 . . . . . . 7 ((ω ⊆ (card‘𝑇) ∧ (card‘(card‘𝑇)) = (card‘𝑇)) → (card‘𝑇) = (ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}))
3936, 37, 38sylancl 693 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) = (ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}))
4039fveq2d 6154 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (cf‘(card‘𝑇)) = (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)})))
4139, 40oveq12d 6625 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) = ((ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}) ↑𝑚 (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}))))
4239, 41breq12d 4628 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ↔ (ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}) ≺ ((ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}) ↑𝑚 (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)})))))
435, 42mpbiri 248 . . . 4 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))))
44 simp1 1059 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → 𝑇 ∈ Tarski)
45 simp3 1061 . . . . . . . . . . . . 13 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))))
46 fvex 6160 . . . . . . . . . . . . . . . 16 (card‘𝑇) ∈ V
47 fvex 6160 . . . . . . . . . . . . . . . 16 (cf‘(card‘𝑇)) ∈ V
4846, 47elmap 7833 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ↔ 𝑥:(cf‘(card‘𝑇))⟶(card‘𝑇))
49 fssxp 6019 . . . . . . . . . . . . . . 15 (𝑥:(cf‘(card‘𝑇))⟶(card‘𝑇) → 𝑥 ⊆ ((cf‘(card‘𝑇)) × (card‘𝑇)))
5048, 49sylbi 207 . . . . . . . . . . . . . 14 (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) → 𝑥 ⊆ ((cf‘(card‘𝑇)) × (card‘𝑇)))
5115ex 450 . . . . . . . . . . . . . . . 16 (𝑇 ∈ Tarski → (𝑥 ∈ (card‘𝑇) → 𝑥𝑇))
5251ssrdv 3590 . . . . . . . . . . . . . . 15 (𝑇 ∈ Tarski → (card‘𝑇) ⊆ 𝑇)
53 cfle 9023 . . . . . . . . . . . . . . . . 17 (cf‘(card‘𝑇)) ⊆ (card‘𝑇)
54 sstr 3592 . . . . . . . . . . . . . . . . 17 (((cf‘(card‘𝑇)) ⊆ (card‘𝑇) ∧ (card‘𝑇) ⊆ 𝑇) → (cf‘(card‘𝑇)) ⊆ 𝑇)
5553, 54mpan 705 . . . . . . . . . . . . . . . 16 ((card‘𝑇) ⊆ 𝑇 → (cf‘(card‘𝑇)) ⊆ 𝑇)
56 tskxpss 9541 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ⊆ 𝑇 ∧ (card‘𝑇) ⊆ 𝑇) → ((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇)
57563exp 1261 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ Tarski → ((cf‘(card‘𝑇)) ⊆ 𝑇 → ((card‘𝑇) ⊆ 𝑇 → ((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇)))
5857com23 86 . . . . . . . . . . . . . . . 16 (𝑇 ∈ Tarski → ((card‘𝑇) ⊆ 𝑇 → ((cf‘(card‘𝑇)) ⊆ 𝑇 → ((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇)))
5955, 58mpdi 45 . . . . . . . . . . . . . . 15 (𝑇 ∈ Tarski → ((card‘𝑇) ⊆ 𝑇 → ((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇))
6052, 59mpd 15 . . . . . . . . . . . . . 14 (𝑇 ∈ Tarski → ((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇)
61 sstr2 3591 . . . . . . . . . . . . . 14 (𝑥 ⊆ ((cf‘(card‘𝑇)) × (card‘𝑇)) → (((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇𝑥𝑇))
6250, 60, 61syl2im 40 . . . . . . . . . . . . 13 (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) → (𝑇 ∈ Tarski → 𝑥𝑇))
6345, 44, 62sylc 65 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → 𝑥𝑇)
64 simp2 1060 . . . . . . . . . . . . 13 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → (cf‘(card‘𝑇)) ∈ (card‘𝑇))
65 ffn 6004 . . . . . . . . . . . . . . . . 17 (𝑥:(cf‘(card‘𝑇))⟶(card‘𝑇) → 𝑥 Fn (cf‘(card‘𝑇)))
66 fndmeng 7981 . . . . . . . . . . . . . . . . 17 ((𝑥 Fn (cf‘(card‘𝑇)) ∧ (cf‘(card‘𝑇)) ∈ V) → (cf‘(card‘𝑇)) ≈ 𝑥)
6765, 47, 66sylancl 693 . . . . . . . . . . . . . . . 16 (𝑥:(cf‘(card‘𝑇))⟶(card‘𝑇) → (cf‘(card‘𝑇)) ≈ 𝑥)
6848, 67sylbi 207 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) → (cf‘(card‘𝑇)) ≈ 𝑥)
6968ensymd 7954 . . . . . . . . . . . . . 14 (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) → 𝑥 ≈ (cf‘(card‘𝑇)))
70 cardsdomelir 8746 . . . . . . . . . . . . . 14 ((cf‘(card‘𝑇)) ∈ (card‘𝑇) → (cf‘(card‘𝑇)) ≺ 𝑇)
71 ensdomtr 8043 . . . . . . . . . . . . . 14 ((𝑥 ≈ (cf‘(card‘𝑇)) ∧ (cf‘(card‘𝑇)) ≺ 𝑇) → 𝑥𝑇)
7269, 70, 71syl2an 494 . . . . . . . . . . . . 13 ((𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → 𝑥𝑇)
7345, 64, 72syl2anc 692 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → 𝑥𝑇)
74 tskssel 9526 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑥𝑇) → 𝑥𝑇)
7544, 63, 73, 74syl3anc 1323 . . . . . . . . . . 11 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → 𝑥𝑇)
76753expia 1264 . . . . . . . . . 10 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) → 𝑥𝑇))
7776ssrdv 3590 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ⊆ 𝑇)
78 ssdomg 7948 . . . . . . . . . 10 (𝑇 ∈ Tarski → (((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ⊆ 𝑇 → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ 𝑇))
7978imp 445 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ⊆ 𝑇) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ 𝑇)
8077, 79syldan 487 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ 𝑇)
8123adantr 481 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → 𝑇 ≈ (card‘𝑇))
82 domentr 7962 . . . . . . . 8 ((((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ 𝑇𝑇 ≈ (card‘𝑇)) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ (card‘𝑇))
8380, 81, 82syl2anc 692 . . . . . . 7 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ (card‘𝑇))
84 domnsym 8033 . . . . . . 7 (((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ (card‘𝑇) → ¬ (card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))))
8583, 84syl 17 . . . . . 6 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → ¬ (card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))))
8685ex 450 . . . . 5 (𝑇 ∈ Tarski → ((cf‘(card‘𝑇)) ∈ (card‘𝑇) → ¬ (card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))))
8786adantr 481 . . . 4 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((cf‘(card‘𝑇)) ∈ (card‘𝑇) → ¬ (card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))))
8843, 87mt2d 131 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ¬ (cf‘(card‘𝑇)) ∈ (card‘𝑇))
89 cfon 9024 . . . . . 6 (cf‘(card‘𝑇)) ∈ On
9089, 9onsseli 5803 . . . . 5 ((cf‘(card‘𝑇)) ⊆ (card‘𝑇) ↔ ((cf‘(card‘𝑇)) ∈ (card‘𝑇) ∨ (cf‘(card‘𝑇)) = (card‘𝑇)))
9153, 90mpbi 220 . . . 4 ((cf‘(card‘𝑇)) ∈ (card‘𝑇) ∨ (cf‘(card‘𝑇)) = (card‘𝑇))
9291ori 390 . . 3 (¬ (cf‘(card‘𝑇)) ∈ (card‘𝑇) → (cf‘(card‘𝑇)) = (card‘𝑇))
9388, 92syl 17 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (cf‘(card‘𝑇)) = (card‘𝑇))
94 elina 9456 . 2 ((card‘𝑇) ∈ Inacc ↔ ((card‘𝑇) ≠ ∅ ∧ (cf‘(card‘𝑇)) = (card‘𝑇) ∧ ∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇)))
953, 93, 30, 94syl3anbrc 1244 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ∈ Inacc)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  Vcvv 3186  wss 3556  c0 3893  𝒫 cpw 4132   cint 4442   class class class wbr 4615  cmpt 4675   × cxp 5074  Oncon0 5684   Fn wfn 5844  wf 5845  cfv 5849  (class class class)co 6607  ωcom 7015  𝑚 cmap 7805  cen 7899  cdom 7900  csdm 7901  harchar 8408  cardccrd 8708  cale 8709  cfccf 8710  Inacccina 9452  Tarskictsk 9517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-ac2 9232
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-smo 7391  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-oi 8362  df-har 8410  df-r1 8574  df-card 8712  df-aleph 8713  df-cf 8714  df-acn 8715  df-ac 8886  df-ina 9454  df-tsk 9518
This theorem is referenced by:  r1tskina  9551  tskuni  9552  inaprc  9605
  Copyright terms: Public domain W3C validator