![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsken | Structured version Visualization version GIF version |
Description: Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tsken | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltskg 9764 | . . . 4 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇)))) | |
2 | 1 | ibi 256 | . . 3 ⊢ (𝑇 ∈ Tarski → (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇))) |
3 | 2 | simprd 482 | . 2 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇)) |
4 | elpw2g 4976 | . . 3 ⊢ (𝑇 ∈ Tarski → (𝐴 ∈ 𝒫 𝑇 ↔ 𝐴 ⊆ 𝑇)) | |
5 | 4 | biimpar 503 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → 𝐴 ∈ 𝒫 𝑇) |
6 | breq1 4807 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝑇 ↔ 𝐴 ≈ 𝑇)) | |
7 | eleq1 2827 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑇 ↔ 𝐴 ∈ 𝑇)) | |
8 | 6, 7 | orbi12d 748 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇) ↔ (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇))) |
9 | 8 | rspccva 3448 | . 2 ⊢ ((∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇) ∧ 𝐴 ∈ 𝒫 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) |
10 | 3, 5, 9 | syl2an2r 911 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 ⊆ wss 3715 𝒫 cpw 4302 class class class wbr 4804 ≈ cen 8118 Tarskictsk 9762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-tsk 9763 |
This theorem is referenced by: tskssel 9771 inttsk 9788 r1tskina 9796 tskuni 9797 |
Copyright terms: Public domain | W3C validator |