MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskmval Structured version   Visualization version   GIF version

Theorem tskmval 10264
Description: Value of our tarski map. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskmval (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem tskmval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3515 . 2 (𝐴𝑉𝐴 ∈ V)
2 grothtsk 10260 . . . . 5 Tarski = V
31, 2eleqtrrdi 2927 . . . 4 (𝐴𝑉𝐴 Tarski)
4 eluni2 4845 . . . 4 (𝐴 Tarski ↔ ∃𝑥 ∈ Tarski 𝐴𝑥)
53, 4sylib 220 . . 3 (𝐴𝑉 → ∃𝑥 ∈ Tarski 𝐴𝑥)
6 intexrab 5246 . . 3 (∃𝑥 ∈ Tarski 𝐴𝑥 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ∈ V)
75, 6sylib 220 . 2 (𝐴𝑉 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ∈ V)
8 eleq1 2903 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
98rabbidv 3483 . . . 4 (𝑦 = 𝐴 → {𝑥 ∈ Tarski ∣ 𝑦𝑥} = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
109inteqd 4884 . . 3 (𝑦 = 𝐴 {𝑥 ∈ Tarski ∣ 𝑦𝑥} = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
11 df-tskm 10263 . . 3 tarskiMap = (𝑦 ∈ V ↦ {𝑥 ∈ Tarski ∣ 𝑦𝑥})
1210, 11fvmptg 6769 . 2 ((𝐴 ∈ V ∧ {𝑥 ∈ Tarski ∣ 𝐴𝑥} ∈ V) → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
131, 7, 12syl2anc 586 1 (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  wrex 3142  {crab 3145  Vcvv 3497   cuni 4841   cint 4879  cfv 6358  Tarskictsk 10173  tarskiMapctskm 10262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333  ax-groth 10248
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-int 4880  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-iota 6317  df-fun 6360  df-fv 6366  df-tsk 10174  df-tskm 10263
This theorem is referenced by:  tskmid  10265  tskmcl  10266  sstskm  10267  eltskm  10268
  Copyright terms: Public domain W3C validator