MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskssel Structured version   Visualization version   GIF version

Theorem tskssel 9617
Description: A part of a Tarski class strictly dominated by the class is an element of the class. JFM CLASSES2 th. 2. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskssel ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tskssel
StepHypRef Expression
1 sdomnen 8026 . . 3 (𝐴𝑇 → ¬ 𝐴𝑇)
213ad2ant3 1104 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → ¬ 𝐴𝑇)
3 tsken 9614 . . . 4 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝑇𝐴𝑇))
433adant3 1101 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → (𝐴𝑇𝐴𝑇))
54ord 391 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → (¬ 𝐴𝑇𝐴𝑇))
62, 5mpd 15 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  w3a 1054  wcel 2030  wss 3607   class class class wbr 4685  cen 7994  csdm 7996  Tarskictsk 9608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-sdom 8000  df-tsk 9609
This theorem is referenced by:  tskpr  9630  tskwe2  9633  tskord  9640  tskcard  9641  tskurn  9649
  Copyright terms: Public domain W3C validator