MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskxpss Structured version   Visualization version   GIF version

Theorem tskxpss 10193
Description: A Cartesian product of two parts of a Tarski class is a part of the class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.)
Assertion
Ref Expression
tskxpss ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)

Proof of Theorem tskxpss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 5578 . . . . 5 (𝑧 ∈ (𝑇 × 𝑇) ↔ ∃𝑥𝑇𝑦𝑇 𝑧 = ⟨𝑥, 𝑦⟩)
2 tskop 10192 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇) → ⟨𝑥, 𝑦⟩ ∈ 𝑇)
3 eleq1a 2908 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝑇 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝑇))
42, 3syl 17 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇) → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝑇))
543expib 1118 . . . . . 6 (𝑇 ∈ Tarski → ((𝑥𝑇𝑦𝑇) → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝑇)))
65rexlimdvv 3293 . . . . 5 (𝑇 ∈ Tarski → (∃𝑥𝑇𝑦𝑇 𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝑇))
71, 6syl5bi 244 . . . 4 (𝑇 ∈ Tarski → (𝑧 ∈ (𝑇 × 𝑇) → 𝑧𝑇))
87ssrdv 3972 . . 3 (𝑇 ∈ Tarski → (𝑇 × 𝑇) ⊆ 𝑇)
9 xpss12 5569 . . 3 ((𝐴𝑇𝐵𝑇) → (𝐴 × 𝐵) ⊆ (𝑇 × 𝑇))
10 sstr 3974 . . . 4 (((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ⊆ 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)
1110expcom 416 . . 3 ((𝑇 × 𝑇) ⊆ 𝑇 → ((𝐴 × 𝐵) ⊆ (𝑇 × 𝑇) → (𝐴 × 𝐵) ⊆ 𝑇))
128, 9, 11syl2im 40 . 2 (𝑇 ∈ Tarski → ((𝐴𝑇𝐵𝑇) → (𝐴 × 𝐵) ⊆ 𝑇))
13123impib 1112 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → (𝐴 × 𝐵) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  wss 3935  cop 4572   × cxp 5552  Tarskictsk 10169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-r1 9192  df-tsk 10170
This theorem is referenced by:  tskcard  10202
  Copyright terms: Public domain W3C validator