Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsf1o Structured version   Visualization version   GIF version

Theorem tsmsf1o 22070
 Description: Re-index an infinite group sum using a bijection. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmsf1o.b 𝐵 = (Base‘𝐺)
tsmsf1o.1 (𝜑𝐺 ∈ CMnd)
tsmsf1o.2 (𝜑𝐺 ∈ TopSp)
tsmsf1o.a (𝜑𝐴𝑉)
tsmsf1o.f (𝜑𝐹:𝐴𝐵)
tsmsf1o.s (𝜑𝐻:𝐶1-1-onto𝐴)
Assertion
Ref Expression
tsmsf1o (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums (𝐹𝐻)))

Proof of Theorem tsmsf1o
Dummy variables 𝑎 𝑏 𝑢 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsf1o.s . . . . . . . . . . 11 (𝜑𝐻:𝐶1-1-onto𝐴)
2 f1opwfi 8386 . . . . . . . . . . 11 (𝐻:𝐶1-1-onto𝐴 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin))
31, 2syl 17 . . . . . . . . . 10 (𝜑 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin))
4 f1of 6250 . . . . . . . . . 10 ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin) → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
53, 4syl 17 . . . . . . . . 9 (𝜑 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
6 eqid 2724 . . . . . . . . . 10 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))
76fmpt 6496 . . . . . . . . 9 (∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑎) ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
85, 7sylibr 224 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑎) ∈ (𝒫 𝐴 ∩ Fin))
9 sseq1 3732 . . . . . . . . . . 11 (𝑦 = (𝐻𝑎) → (𝑦𝑧 ↔ (𝐻𝑎) ⊆ 𝑧))
109imbi1d 330 . . . . . . . . . 10 (𝑦 = (𝐻𝑎) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
1110ralbidv 3088 . . . . . . . . 9 (𝑦 = (𝐻𝑎) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
126, 11rexrnmpt 6484 . . . . . . . 8 (∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑎) ∈ (𝒫 𝐴 ∩ Fin) → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
138, 12syl 17 . . . . . . 7 (𝜑 → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
14 f1ofo 6257 . . . . . . . . 9 ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin) → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–onto→(𝒫 𝐴 ∩ Fin))
15 forn 6231 . . . . . . . . 9 ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–onto→(𝒫 𝐴 ∩ Fin) → ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝒫 𝐴 ∩ Fin))
163, 14, 153syl 18 . . . . . . . 8 (𝜑 → ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝒫 𝐴 ∩ Fin))
1716rexeqdv 3248 . . . . . . 7 (𝜑 → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
18 imaeq2 5572 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → (𝐻𝑎) = (𝐻𝑏))
1918cbvmptv 4858 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝑏 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑏))
2019fmpt 6496 . . . . . . . . . . . . 13 (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑏) ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
215, 20sylibr 224 . . . . . . . . . . . 12 (𝜑 → ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑏) ∈ (𝒫 𝐴 ∩ Fin))
22 sseq2 3733 . . . . . . . . . . . . . 14 (𝑧 = (𝐻𝑏) → ((𝐻𝑎) ⊆ 𝑧 ↔ (𝐻𝑎) ⊆ (𝐻𝑏)))
23 reseq2 5498 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐻𝑏) → (𝐹𝑧) = (𝐹 ↾ (𝐻𝑏)))
2423oveq2d 6781 . . . . . . . . . . . . . . 15 (𝑧 = (𝐻𝑏) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝐻𝑏))))
2524eleq1d 2788 . . . . . . . . . . . . . 14 (𝑧 = (𝐻𝑏) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢))
2622, 25imbi12d 333 . . . . . . . . . . . . 13 (𝑧 = (𝐻𝑏) → (((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢)))
2719, 26ralrnmpt 6483 . . . . . . . . . . . 12 (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑏) ∈ (𝒫 𝐴 ∩ Fin) → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢)))
2821, 27syl 17 . . . . . . . . . . 11 (𝜑 → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢)))
2916raleqdv 3247 . . . . . . . . . . 11 (𝜑 → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
3028, 29bitr3d 270 . . . . . . . . . 10 (𝜑 → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
3130adantr 472 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
32 f1of1 6249 . . . . . . . . . . . . . 14 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶1-1𝐴)
331, 32syl 17 . . . . . . . . . . . . 13 (𝜑𝐻:𝐶1-1𝐴)
3433ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐻:𝐶1-1𝐴)
35 elfpw 8384 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑎𝐶𝑎 ∈ Fin))
3635simplbi 478 . . . . . . . . . . . . 13 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) → 𝑎𝐶)
3736ad2antlr 765 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑎𝐶)
38 elfpw 8384 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑏𝐶𝑏 ∈ Fin))
3938simplbi 478 . . . . . . . . . . . . 13 (𝑏 ∈ (𝒫 𝐶 ∩ Fin) → 𝑏𝐶)
4039adantl 473 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑏𝐶)
41 f1imass 6636 . . . . . . . . . . . 12 ((𝐻:𝐶1-1𝐴 ∧ (𝑎𝐶𝑏𝐶)) → ((𝐻𝑎) ⊆ (𝐻𝑏) ↔ 𝑎𝑏))
4234, 37, 40, 41syl12anc 1437 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝐻𝑎) ⊆ (𝐻𝑏) ↔ 𝑎𝑏))
43 tsmsf1o.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
44 eqid 2724 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
45 tsmsf1o.1 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ CMnd)
4645ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐺 ∈ CMnd)
4738simprbi 483 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝒫 𝐶 ∩ Fin) → 𝑏 ∈ Fin)
4847adantl 473 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑏 ∈ Fin)
49 f1ores 6264 . . . . . . . . . . . . . . . . 17 ((𝐻:𝐶1-1𝐴𝑏𝐶) → (𝐻𝑏):𝑏1-1-onto→(𝐻𝑏))
5034, 40, 49syl2anc 696 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏):𝑏1-1-onto→(𝐻𝑏))
51 f1ofo 6257 . . . . . . . . . . . . . . . 16 ((𝐻𝑏):𝑏1-1-onto→(𝐻𝑏) → (𝐻𝑏):𝑏onto→(𝐻𝑏))
5250, 51syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏):𝑏onto→(𝐻𝑏))
53 fofi 8368 . . . . . . . . . . . . . . 15 ((𝑏 ∈ Fin ∧ (𝐻𝑏):𝑏onto→(𝐻𝑏)) → (𝐻𝑏) ∈ Fin)
5448, 52, 53syl2anc 696 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏) ∈ Fin)
55 tsmsf1o.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐴𝐵)
5655ad2antrr 764 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐹:𝐴𝐵)
57 imassrn 5587 . . . . . . . . . . . . . . . 16 (𝐻𝑏) ⊆ ran 𝐻
581ad2antrr 764 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐻:𝐶1-1-onto𝐴)
59 f1ofo 6257 . . . . . . . . . . . . . . . . 17 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶onto𝐴)
60 forn 6231 . . . . . . . . . . . . . . . . 17 (𝐻:𝐶onto𝐴 → ran 𝐻 = 𝐴)
6158, 59, 603syl 18 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ran 𝐻 = 𝐴)
6257, 61syl5sseq 3759 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏) ⊆ 𝐴)
6356, 62fssresd 6184 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ (𝐻𝑏)):(𝐻𝑏)⟶𝐵)
64 fvexd 6316 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (0g𝐺) ∈ V)
6563, 54, 64fdmfifsupp 8401 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ (𝐻𝑏)) finSupp (0g𝐺))
6643, 44, 46, 54, 63, 65, 50gsumf1o 18438 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) = (𝐺 Σg ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏))))
67 df-ima 5231 . . . . . . . . . . . . . . . . 17 (𝐻𝑏) = ran (𝐻𝑏)
6867eqimss2i 3766 . . . . . . . . . . . . . . . 16 ran (𝐻𝑏) ⊆ (𝐻𝑏)
69 cores 5751 . . . . . . . . . . . . . . . 16 (ran (𝐻𝑏) ⊆ (𝐻𝑏) → ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏)) = (𝐹 ∘ (𝐻𝑏)))
7068, 69ax-mp 5 . . . . . . . . . . . . . . 15 ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏)) = (𝐹 ∘ (𝐻𝑏))
71 resco 5752 . . . . . . . . . . . . . . 15 ((𝐹𝐻) ↾ 𝑏) = (𝐹 ∘ (𝐻𝑏))
7270, 71eqtr4i 2749 . . . . . . . . . . . . . 14 ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏)) = ((𝐹𝐻) ↾ 𝑏)
7372oveq2i 6776 . . . . . . . . . . . . 13 (𝐺 Σg ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏))) = (𝐺 Σg ((𝐹𝐻) ↾ 𝑏))
7466, 73syl6eq 2774 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) = (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)))
7574eleq1d 2788 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢 ↔ (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢))
7642, 75imbi12d 333 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ (𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
7776ralbidva 3087 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
7831, 77bitr3d 270 . . . . . . . 8 ((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
7978rexbidva 3151 . . . . . . 7 (𝜑 → (∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
8013, 17, 793bitr3d 298 . . . . . 6 (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
8180imbi2d 329 . . . . 5 (𝜑 → ((𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ (𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢))))
8281ralbidv 3088 . . . 4 (𝜑 → (∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢))))
8382anbi2d 742 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))))
84 eqid 2724 . . . 4 (TopOpen‘𝐺) = (TopOpen‘𝐺)
85 eqid 2724 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
86 tsmsf1o.2 . . . 4 (𝜑𝐺 ∈ TopSp)
87 tsmsf1o.a . . . 4 (𝜑𝐴𝑉)
8843, 84, 85, 45, 86, 87, 55eltsms 22058 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
89 eqid 2724 . . . 4 (𝒫 𝐶 ∩ Fin) = (𝒫 𝐶 ∩ Fin)
90 f1dmex 7253 . . . . 5 ((𝐻:𝐶1-1𝐴𝐴𝑉) → 𝐶 ∈ V)
9133, 87, 90syl2anc 696 . . . 4 (𝜑𝐶 ∈ V)
92 f1of 6250 . . . . . 6 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶𝐴)
931, 92syl 17 . . . . 5 (𝜑𝐻:𝐶𝐴)
94 fco 6171 . . . . 5 ((𝐹:𝐴𝐵𝐻:𝐶𝐴) → (𝐹𝐻):𝐶𝐵)
9555, 93, 94syl2anc 696 . . . 4 (𝜑 → (𝐹𝐻):𝐶𝐵)
9643, 84, 89, 45, 86, 91, 95eltsms 22058 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹𝐻)) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))))
9783, 88, 963bitr4d 300 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ (𝐺 tsums (𝐹𝐻))))
9897eqrdv 2722 1 (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums (𝐹𝐻)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1596   ∈ wcel 2103  ∀wral 3014  ∃wrex 3015  Vcvv 3304   ∩ cin 3679   ⊆ wss 3680  𝒫 cpw 4266   ↦ cmpt 4837  ran crn 5219   ↾ cres 5220   “ cima 5221   ∘ ccom 5222  ⟶wf 5997  –1-1→wf1 5998  –onto→wfo 5999  –1-1-onto→wf1o 6000  ‘cfv 6001  (class class class)co 6765  Fincfn 8072  Basecbs 15980  TopOpenctopn 16205  0gc0g 16223   Σg cgsu 16224  CMndccmn 18314  TopSpctps 20859   tsums ctsu 22051 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-oi 8531  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-n0 11406  df-z 11491  df-uz 11801  df-fz 12441  df-fzo 12581  df-seq 12917  df-hash 13233  df-0g 16225  df-gsum 16226  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-cntz 17871  df-cmn 18316  df-fbas 19866  df-fg 19867  df-top 20822  df-topon 20839  df-topsp 20860  df-ntr 20947  df-nei 21025  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-tsms 22052 This theorem is referenced by:  esumf1o  30342
 Copyright terms: Public domain W3C validator