Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsgsum Structured version   Visualization version   GIF version

Theorem tsmsgsum 22135
 Description: The convergent points of a finite topological group sum are the closure of the finite group sum operation. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmsid.b 𝐵 = (Base‘𝐺)
tsmsid.z 0 = (0g𝐺)
tsmsid.1 (𝜑𝐺 ∈ CMnd)
tsmsid.2 (𝜑𝐺 ∈ TopSp)
tsmsid.a (𝜑𝐴𝑉)
tsmsid.f (𝜑𝐹:𝐴𝐵)
tsmsid.w (𝜑𝐹 finSupp 0 )
tsmsgsum.j 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tsmsgsum (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}))

Proof of Theorem tsmsgsum
Dummy variables 𝑦 𝑧 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsid.2 . . . . . . 7 (𝜑𝐺 ∈ TopSp)
2 tsmsid.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 tsmsgsum.j . . . . . . . 8 𝐽 = (TopOpen‘𝐺)
42, 3istps 20932 . . . . . . 7 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
51, 4sylib 208 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝐵))
6 toponuni 20913 . . . . . 6 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
75, 6syl 17 . . . . 5 (𝜑𝐵 = 𝐽)
87eleq2d 2817 . . . 4 (𝜑 → (𝑥𝐵𝑥 𝐽))
9 elfpw 8425 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
109simplbi 478 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
1110adantl 473 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
12 suppssdm 7468 . . . . . . . . . . . . . . 15 (𝐹 supp 0 ) ⊆ dom 𝐹
13 tsmsid.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐴𝐵)
14 fdm 6204 . . . . . . . . . . . . . . . 16 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
1513, 14syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐹 = 𝐴)
1612, 15syl5sseq 3786 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
1716ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ 𝐴)
1811, 17unssd 3924 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ⊆ 𝐴)
199simprbi 483 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
2019adantl 473 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
21 tsmsid.w . . . . . . . . . . . . . . 15 (𝜑𝐹 finSupp 0 )
2221ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹 finSupp 0 )
2322fsuppimpd 8439 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ∈ Fin)
24 unfi 8384 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ (𝐹 supp 0 ) ∈ Fin) → (𝑦 ∪ (𝐹 supp 0 )) ∈ Fin)
2520, 23, 24syl2anc 696 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ∈ Fin)
26 elfpw 8425 . . . . . . . . . . . 12 ((𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦 ∪ (𝐹 supp 0 )) ⊆ 𝐴 ∧ (𝑦 ∪ (𝐹 supp 0 )) ∈ Fin))
2718, 25, 26sylanbrc 701 . . . . . . . . . . 11 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin))
28 ssun1 3911 . . . . . . . . . . . . . . 15 𝑦 ⊆ (𝑦 ∪ (𝐹 supp 0 ))
29 id 22 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → 𝑧 = (𝑦 ∪ (𝐹 supp 0 )))
3028, 29syl5sseqr 3787 . . . . . . . . . . . . . 14 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → 𝑦𝑧)
31 pm5.5 350 . . . . . . . . . . . . . 14 (𝑦𝑧 → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
3230, 31syl 17 . . . . . . . . . . . . 13 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
33 reseq2 5538 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → (𝐹𝑧) = (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 ))))
3433oveq2d 6821 . . . . . . . . . . . . . 14 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))))
3534eleq1d 2816 . . . . . . . . . . . . 13 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
3632, 35bitrd 268 . . . . . . . . . . . 12 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
3736rspcv 3437 . . . . . . . . . . 11 ((𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
3827, 37syl 17 . . . . . . . . . 10 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
39 tsmsid.z . . . . . . . . . . . 12 0 = (0g𝐺)
40 tsmsid.1 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ CMnd)
4140ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
42 tsmsid.a . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
4342ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
4413ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴𝐵)
45 ssun2 3912 . . . . . . . . . . . . 13 (𝐹 supp 0 ) ⊆ (𝑦 ∪ (𝐹 supp 0 ))
4645a1i 11 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ (𝑦 ∪ (𝐹 supp 0 )))
472, 39, 41, 43, 44, 46, 22gsumres 18506 . . . . . . . . . . 11 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) = (𝐺 Σg 𝐹))
4847eleq1d 2816 . . . . . . . . . 10 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢 ↔ (𝐺 Σg 𝐹) ∈ 𝑢))
4938, 48sylibd 229 . . . . . . . . 9 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg 𝐹) ∈ 𝑢))
5049rexlimdva 3161 . . . . . . . 8 ((𝜑𝑢𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg 𝐹) ∈ 𝑢))
5121fsuppimpd 8439 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
52 elfpw 8425 . . . . . . . . . . . 12 ((𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝐹 supp 0 ) ⊆ 𝐴 ∧ (𝐹 supp 0 ) ∈ Fin))
5316, 51, 52sylanbrc 701 . . . . . . . . . . 11 (𝜑 → (𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin))
5453adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) → (𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin))
5540ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐺 ∈ CMnd)
5642ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐴𝑉)
5713ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐹:𝐴𝐵)
58 simprr 813 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐹 supp 0 ) ⊆ 𝑧)
5921ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐹 finSupp 0 )
602, 39, 55, 56, 57, 58, 59gsumres 18506 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg 𝐹))
61 simplrr 820 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg 𝐹) ∈ 𝑢)
6260, 61eqeltrd 2831 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)
6362expr 644 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
6463ralrimiva 3096 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) → ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
65 sseq1 3759 . . . . . . . . . . . . 13 (𝑦 = (𝐹 supp 0 ) → (𝑦𝑧 ↔ (𝐹 supp 0 ) ⊆ 𝑧))
6665imbi1d 330 . . . . . . . . . . . 12 (𝑦 = (𝐹 supp 0 ) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6766ralbidv 3116 . . . . . . . . . . 11 (𝑦 = (𝐹 supp 0 ) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6867rspcev 3441 . . . . . . . . . 10 (((𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
6954, 64, 68syl2anc 696 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
7069expr 644 . . . . . . . 8 ((𝜑𝑢𝐽) → ((𝐺 Σg 𝐹) ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
7150, 70impbid 202 . . . . . . 7 ((𝜑𝑢𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg 𝐹) ∈ 𝑢))
72 disjsn 4382 . . . . . . . 8 ((𝑢 ∩ {(𝐺 Σg 𝐹)}) = ∅ ↔ ¬ (𝐺 Σg 𝐹) ∈ 𝑢)
7372necon2abii 2974 . . . . . . 7 ((𝐺 Σg 𝐹) ∈ 𝑢 ↔ (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅)
7471, 73syl6bb 276 . . . . . 6 ((𝜑𝑢𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))
7574imbi2d 329 . . . . 5 ((𝜑𝑢𝐽) → ((𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅)))
7675ralbidva 3115 . . . 4 (𝜑 → (∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅)))
778, 76anbi12d 749 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))) ↔ (𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))))
78 eqid 2752 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
792, 3, 78, 40, 1, 42, 13eltsms 22129 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
80 topontop 20912 . . . . 5 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
815, 80syl 17 . . . 4 (𝜑𝐽 ∈ Top)
822, 39, 40, 42, 13, 21gsumcl 18508 . . . . . 6 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
8382snssd 4477 . . . . 5 (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐵)
8483, 7sseqtrd 3774 . . . 4 (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐽)
85 eqid 2752 . . . . 5 𝐽 = 𝐽
8685elcls2 21072 . . . 4 ((𝐽 ∈ Top ∧ {(𝐺 Σg 𝐹)} ⊆ 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}) ↔ (𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))))
8781, 84, 86syl2anc 696 . . 3 (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}) ↔ (𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))))
8877, 79, 873bitr4d 300 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)})))
8988eqrdv 2750 1 (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1624   ∈ wcel 2131   ≠ wne 2924  ∀wral 3042  ∃wrex 3043   ∪ cun 3705   ∩ cin 3706   ⊆ wss 3707  ∅c0 4050  𝒫 cpw 4294  {csn 4313  ∪ cuni 4580   class class class wbr 4796  dom cdm 5258   ↾ cres 5260  ⟶wf 6037  ‘cfv 6041  (class class class)co 6805   supp csupp 7455  Fincfn 8113   finSupp cfsupp 8432  Basecbs 16051  TopOpenctopn 16276  0gc0g 16294   Σg cgsu 16295  CMndccmn 18385  Topctop 20892  TopOnctopon 20909  TopSpctps 20930  clsccl 21016   tsums ctsu 22122 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-n0 11477  df-z 11562  df-uz 11872  df-fz 12512  df-fzo 12652  df-seq 12988  df-hash 13304  df-0g 16296  df-gsum 16297  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-cntz 17942  df-cmn 18387  df-fbas 19937  df-fg 19938  df-top 20893  df-topon 20910  df-topsp 20931  df-cld 21017  df-ntr 21018  df-cls 21019  df-nei 21096  df-fil 21843  df-fm 21935  df-flim 21936  df-flf 21937  df-tsms 22123 This theorem is referenced by:  tsmsid  22136  tgptsmscls  22146
 Copyright terms: Public domain W3C validator