![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsmsid | Structured version Visualization version GIF version |
Description: If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
Ref | Expression |
---|---|
tsmsid.b | ⊢ 𝐵 = (Base‘𝐺) |
tsmsid.z | ⊢ 0 = (0g‘𝐺) |
tsmsid.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
tsmsid.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
tsmsid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
tsmsid.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
tsmsid.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
tsmsid | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmsid.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
2 | tsmsid.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2651 | . . . . . . 7 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
4 | 2, 3 | istps 20786 | . . . . . 6 ⊢ (𝐺 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) |
5 | 1, 4 | sylib 208 | . . . . 5 ⊢ (𝜑 → (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) |
6 | topontop 20766 | . . . . 5 ⊢ ((TopOpen‘𝐺) ∈ (TopOn‘𝐵) → (TopOpen‘𝐺) ∈ Top) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (TopOpen‘𝐺) ∈ Top) |
8 | tsmsid.z | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
9 | tsmsid.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
10 | tsmsid.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
11 | tsmsid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
12 | tsmsid.w | . . . . . . 7 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
13 | 2, 8, 9, 10, 11, 12 | gsumcl 18362 | . . . . . 6 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵) |
14 | 13 | snssd 4372 | . . . . 5 ⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐵) |
15 | toponuni 20767 | . . . . . 6 ⊢ ((TopOpen‘𝐺) ∈ (TopOn‘𝐵) → 𝐵 = ∪ (TopOpen‘𝐺)) | |
16 | 5, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐵 = ∪ (TopOpen‘𝐺)) |
17 | 14, 16 | sseqtrd 3674 | . . . 4 ⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ ∪ (TopOpen‘𝐺)) |
18 | eqid 2651 | . . . . 5 ⊢ ∪ (TopOpen‘𝐺) = ∪ (TopOpen‘𝐺) | |
19 | 18 | sscls 20908 | . . . 4 ⊢ (((TopOpen‘𝐺) ∈ Top ∧ {(𝐺 Σg 𝐹)} ⊆ ∪ (TopOpen‘𝐺)) → {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
20 | 7, 17, 19 | syl2anc 694 | . . 3 ⊢ (𝜑 → {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
21 | ovex 6718 | . . . 4 ⊢ (𝐺 Σg 𝐹) ∈ V | |
22 | 21 | snss 4348 | . . 3 ⊢ ((𝐺 Σg 𝐹) ∈ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)}) ↔ {(𝐺 Σg 𝐹)} ⊆ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
23 | 20, 22 | sylibr 224 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
24 | 2, 8, 9, 1, 10, 11, 12, 3 | tsmsgsum 21989 | . 2 ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((cls‘(TopOpen‘𝐺))‘{(𝐺 Σg 𝐹)})) |
25 | 23, 24 | eleqtrrd 2733 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 {csn 4210 ∪ cuni 4468 class class class wbr 4685 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 finSupp cfsupp 8316 Basecbs 15904 TopOpenctopn 16129 0gc0g 16147 Σg cgsu 16148 CMndccmn 18239 Topctop 20746 TopOnctopon 20763 TopSpctps 20784 clsccl 20870 tsums ctsu 21976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-0g 16149 df-gsum 16150 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-cntz 17796 df-cmn 18241 df-fbas 19791 df-fg 19792 df-top 20747 df-topon 20764 df-topsp 20785 df-cld 20871 df-ntr 20872 df-cls 20873 df-nei 20950 df-fil 21697 df-fm 21789 df-flim 21790 df-flf 21791 df-tsms 21977 |
This theorem is referenced by: haustsmsid 21991 tsms0 21992 tayl0 24161 esumgsum 30235 |
Copyright terms: Public domain | W3C validator |