MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsres Structured version   Visualization version   GIF version

Theorem tsmsres 21857
Description: Extend an infinite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 18-Sep-2015.) (Revised by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
tsmsres.b 𝐵 = (Base‘𝐺)
tsmsres.z 0 = (0g𝐺)
tsmsres.1 (𝜑𝐺 ∈ CMnd)
tsmsres.2 (𝜑𝐺 ∈ TopSp)
tsmsres.a (𝜑𝐴𝑉)
tsmsres.f (𝜑𝐹:𝐴𝐵)
tsmsres.s (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
Assertion
Ref Expression
tsmsres (𝜑 → (𝐺 tsums (𝐹𝑊)) = (𝐺 tsums 𝐹))

Proof of Theorem tsmsres
Dummy variables 𝑎 𝑏 𝑢 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3811 . . . . . . . . . . . 12 (𝐴𝑊) ⊆ 𝐴
2 sspwb 4878 . . . . . . . . . . . 12 ((𝐴𝑊) ⊆ 𝐴 ↔ 𝒫 (𝐴𝑊) ⊆ 𝒫 𝐴)
31, 2mpbi 220 . . . . . . . . . . 11 𝒫 (𝐴𝑊) ⊆ 𝒫 𝐴
4 ssrin 3816 . . . . . . . . . . 11 (𝒫 (𝐴𝑊) ⊆ 𝒫 𝐴 → (𝒫 (𝐴𝑊) ∩ Fin) ⊆ (𝒫 𝐴 ∩ Fin))
53, 4ax-mp 5 . . . . . . . . . 10 (𝒫 (𝐴𝑊) ∩ Fin) ⊆ (𝒫 𝐴 ∩ Fin)
6 simpr 477 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin))
75, 6sseldi 3581 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
8 elfpw 8212 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧𝐴𝑧 ∈ Fin))
98simplbi 476 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
109adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧𝐴)
11 ssrin 3816 . . . . . . . . . . . . . 14 (𝑧𝐴 → (𝑧𝑊) ⊆ (𝐴𝑊))
1210, 11syl 17 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑊) ⊆ (𝐴𝑊))
138simprbi 480 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
1413adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
15 inss1 3811 . . . . . . . . . . . . . 14 (𝑧𝑊) ⊆ 𝑧
16 ssfi 8124 . . . . . . . . . . . . . 14 ((𝑧 ∈ Fin ∧ (𝑧𝑊) ⊆ 𝑧) → (𝑧𝑊) ∈ Fin)
1714, 15, 16sylancl 693 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑊) ∈ Fin)
18 elfpw 8212 . . . . . . . . . . . . 13 ((𝑧𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ ((𝑧𝑊) ⊆ (𝐴𝑊) ∧ (𝑧𝑊) ∈ Fin))
1912, 17, 18sylanbrc 697 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin))
20 sseq2 3606 . . . . . . . . . . . . . . 15 (𝑏 = (𝑧𝑊) → (𝑎𝑏𝑎 ⊆ (𝑧𝑊)))
21 ssin 3813 . . . . . . . . . . . . . . 15 ((𝑎𝑧𝑎𝑊) ↔ 𝑎 ⊆ (𝑧𝑊))
2220, 21syl6bbr 278 . . . . . . . . . . . . . 14 (𝑏 = (𝑧𝑊) → (𝑎𝑏 ↔ (𝑎𝑧𝑎𝑊)))
23 reseq2 5351 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑧𝑊) → ((𝐹𝑊) ↾ 𝑏) = ((𝐹𝑊) ↾ (𝑧𝑊)))
24 inss2 3812 . . . . . . . . . . . . . . . . . 18 (𝑧𝑊) ⊆ 𝑊
25 resabs1 5386 . . . . . . . . . . . . . . . . . 18 ((𝑧𝑊) ⊆ 𝑊 → ((𝐹𝑊) ↾ (𝑧𝑊)) = (𝐹 ↾ (𝑧𝑊)))
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐹𝑊) ↾ (𝑧𝑊)) = (𝐹 ↾ (𝑧𝑊))
2723, 26syl6eq 2671 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑧𝑊) → ((𝐹𝑊) ↾ 𝑏) = (𝐹 ↾ (𝑧𝑊)))
2827oveq2d 6620 . . . . . . . . . . . . . . 15 (𝑏 = (𝑧𝑊) → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) = (𝐺 Σg (𝐹 ↾ (𝑧𝑊))))
2928eleq1d 2683 . . . . . . . . . . . . . 14 (𝑏 = (𝑧𝑊) → ((𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢))
3022, 29imbi12d 334 . . . . . . . . . . . . 13 (𝑏 = (𝑧𝑊) → ((𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) ↔ ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
3130rspcv 3291 . . . . . . . . . . . 12 ((𝑧𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
3219, 31syl 17 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
33 elfpw 8212 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ (𝑎 ⊆ (𝐴𝑊) ∧ 𝑎 ∈ Fin))
3433simplbi 476 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin) → 𝑎 ⊆ (𝐴𝑊))
3534ad2antlr 762 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ⊆ (𝐴𝑊))
36 inss2 3812 . . . . . . . . . . . . . 14 (𝐴𝑊) ⊆ 𝑊
3735, 36syl6ss 3595 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎𝑊)
3837biantrud 528 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑎𝑧 ↔ (𝑎𝑧𝑎𝑊)))
39 resres 5368 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ↾ 𝑊) = (𝐹 ↾ (𝑧𝑊))
4039oveq2i 6615 . . . . . . . . . . . . . 14 (𝐺 Σg ((𝐹𝑧) ↾ 𝑊)) = (𝐺 Σg (𝐹 ↾ (𝑧𝑊)))
41 tsmsres.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐺)
42 tsmsres.z . . . . . . . . . . . . . . 15 0 = (0g𝐺)
43 tsmsres.1 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ CMnd)
4443ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
45 tsmsres.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐴𝐵)
4645ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴𝐵)
4746, 10fssresd 6028 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧):𝑧𝐵)
48 tsmsres.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴𝑉)
49 fex 6444 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
5045, 48, 49syl2anc 692 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ V)
5150ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹 ∈ V)
52 fvex 6158 . . . . . . . . . . . . . . . . . 18 (0g𝐺) ∈ V
5342, 52eqeltri 2694 . . . . . . . . . . . . . . . . 17 0 ∈ V
54 ressuppss 7259 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹𝑧) supp 0 ) ⊆ (𝐹 supp 0 ))
5551, 53, 54sylancl 693 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑧) supp 0 ) ⊆ (𝐹 supp 0 ))
56 tsmsres.s . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
5756ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ 𝑊)
5855, 57sstrd 3593 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑧) supp 0 ) ⊆ 𝑊)
5953a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ V)
6047, 14, 59fdmfifsupp 8229 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧) finSupp 0 )
6141, 42, 44, 14, 47, 58, 60gsumres 18235 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹𝑧) ↾ 𝑊)) = (𝐺 Σg (𝐹𝑧)))
6240, 61syl5reqr 2670 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑧𝑊))))
6362eleq1d 2683 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢))
6438, 63imbi12d 334 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝑎𝑧𝑎𝑊) → (𝐺 Σg (𝐹 ↾ (𝑧𝑊))) ∈ 𝑢)))
6532, 64sylibrd 249 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → (𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6665ralrimdva 2963 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
67 sseq1 3605 . . . . . . . . . . . 12 (𝑦 = 𝑎 → (𝑦𝑧𝑎𝑧))
6867imbi1d 331 . . . . . . . . . . 11 (𝑦 = 𝑎 → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6968ralbidv 2980 . . . . . . . . . 10 (𝑦 = 𝑎 → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
7069rspcev 3295 . . . . . . . . 9 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑎𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
717, 66, 70syl6an 567 . . . . . . . 8 ((𝜑𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
7271rexlimdva 3024 . . . . . . 7 (𝜑 → (∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
73 elfpw 8212 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
7473simplbi 476 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
7574adantl 482 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
76 ssrin 3816 . . . . . . . . . . 11 (𝑦𝐴 → (𝑦𝑊) ⊆ (𝐴𝑊))
7775, 76syl 17 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦𝑊) ⊆ (𝐴𝑊))
7873simprbi 480 . . . . . . . . . . . 12 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
7978adantl 482 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
80 inss1 3811 . . . . . . . . . . 11 (𝑦𝑊) ⊆ 𝑦
81 ssfi 8124 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ (𝑦𝑊) ⊆ 𝑦) → (𝑦𝑊) ∈ Fin)
8279, 80, 81sylancl 693 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦𝑊) ∈ Fin)
83 elfpw 8212 . . . . . . . . . 10 ((𝑦𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ ((𝑦𝑊) ⊆ (𝐴𝑊) ∧ (𝑦𝑊) ∈ Fin))
8477, 82, 83sylanbrc 697 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin))
8574ad2antlr 762 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑦𝐴)
86 elfpw 8212 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ↔ (𝑏 ⊆ (𝐴𝑊) ∧ 𝑏 ∈ Fin))
8786simplbi 476 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) → 𝑏 ⊆ (𝐴𝑊))
8887adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑏 ⊆ (𝐴𝑊))
8988, 1syl6ss 3595 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑏𝐴)
9085, 89unssd 3767 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (𝑦𝑏) ⊆ 𝐴)
9186simprbi 480 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) → 𝑏 ∈ Fin)
92 unfi 8171 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ 𝑏 ∈ Fin) → (𝑦𝑏) ∈ Fin)
9379, 91, 92syl2an 494 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (𝑦𝑏) ∈ Fin)
94 elfpw 8212 . . . . . . . . . . . . 13 ((𝑦𝑏) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦𝑏) ⊆ 𝐴 ∧ (𝑦𝑏) ∈ Fin))
9590, 93, 94sylanbrc 697 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (𝑦𝑏) ∈ (𝒫 𝐴 ∩ Fin))
96 ssun1 3754 . . . . . . . . . . . . . . . 16 𝑦 ⊆ (𝑦𝑏)
97 id 22 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦𝑏) → 𝑧 = (𝑦𝑏))
9896, 97syl5sseqr 3633 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑏) → 𝑦𝑧)
99 pm5.5 351 . . . . . . . . . . . . . . 15 (𝑦𝑧 → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
10098, 99syl 17 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑏) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
101 reseq2 5351 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦𝑏) → (𝐹𝑧) = (𝐹 ↾ (𝑦𝑏)))
102101oveq2d 6620 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑏) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑦𝑏))))
103102eleq1d 2683 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑏) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
104100, 103bitrd 268 . . . . . . . . . . . . 13 (𝑧 = (𝑦𝑏) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
105104rspcv 3291 . . . . . . . . . . . 12 ((𝑦𝑏) ∈ (𝒫 𝐴 ∩ Fin) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
10695, 105syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢))
10743ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 𝐺 ∈ CMnd)
10893adantrr 752 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑦𝑏) ∈ Fin)
10945ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 𝐹:𝐴𝐵)
11090adantrr 752 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑦𝑏) ⊆ 𝐴)
111109, 110fssresd 6028 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ↾ (𝑦𝑏)):(𝑦𝑏)⟶𝐵)
11250, 53jctir 560 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 ∈ V ∧ 0 ∈ V))
113112ad2antrr 761 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ∈ V ∧ 0 ∈ V))
114 ressuppss 7259 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹 ↾ (𝑦𝑏)) supp 0 ) ⊆ (𝐹 supp 0 ))
115113, 114syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) supp 0 ) ⊆ (𝐹 supp 0 ))
11656ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 supp 0 ) ⊆ 𝑊)
117115, 116sstrd 3593 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) supp 0 ) ⊆ 𝑊)
11853a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 0 ∈ V)
119111, 108, 118fdmfifsupp 8229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ↾ (𝑦𝑏)) finSupp 0 )
12041, 42, 107, 108, 111, 117, 119gsumres 18235 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐺 Σg ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊)) = (𝐺 Σg (𝐹 ↾ (𝑦𝑏))))
121 resres 5368 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊) = (𝐹 ↾ ((𝑦𝑏) ∩ 𝑊))
122 indir 3851 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑏) ∩ 𝑊) = ((𝑦𝑊) ∪ (𝑏𝑊))
12388, 36syl6ss 3595 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → 𝑏𝑊)
124123adantrr 752 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → 𝑏𝑊)
125 df-ss 3569 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏𝑊 ↔ (𝑏𝑊) = 𝑏)
126124, 125sylib 208 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑏𝑊) = 𝑏)
127126uneq2d 3745 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑊) ∪ (𝑏𝑊)) = ((𝑦𝑊) ∪ 𝑏))
128 simprr 795 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝑦𝑊) ⊆ 𝑏)
129 ssequn1 3761 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑊) ⊆ 𝑏 ↔ ((𝑦𝑊) ∪ 𝑏) = 𝑏)
130128, 129sylib 208 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑊) ∪ 𝑏) = 𝑏)
131127, 130eqtrd 2655 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑊) ∪ (𝑏𝑊)) = 𝑏)
132122, 131syl5eq 2667 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝑦𝑏) ∩ 𝑊) = 𝑏)
133132reseq2d 5356 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐹 ↾ ((𝑦𝑏) ∩ 𝑊)) = (𝐹𝑏))
134121, 133syl5eq 2667 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊) = (𝐹𝑏))
135124resabs1d 5387 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹𝑊) ↾ 𝑏) = (𝐹𝑏))
136134, 135eqtr4d 2658 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊) = ((𝐹𝑊) ↾ 𝑏))
137136oveq2d 6620 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐺 Σg ((𝐹 ↾ (𝑦𝑏)) ↾ 𝑊)) = (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)))
138120, 137eqtr3d 2657 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → (𝐺 Σg (𝐹 ↾ (𝑦𝑏))) = (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)))
139138eleq1d 2683 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 ↔ (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))
140139biimpd 219 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ (𝑦𝑊) ⊆ 𝑏)) → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))
141140expr 642 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → ((𝑦𝑊) ⊆ 𝑏 → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
142141com23 86 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝑦𝑏))) ∈ 𝑢 → ((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
143106, 142syld 47 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
144143ralrimdva 2963 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
145 sseq1 3605 . . . . . . . . . . . 12 (𝑎 = (𝑦𝑊) → (𝑎𝑏 ↔ (𝑦𝑊) ⊆ 𝑏))
146145imbi1d 331 . . . . . . . . . . 11 (𝑎 = (𝑦𝑊) → ((𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) ↔ ((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
147146ralbidv 2980 . . . . . . . . . 10 (𝑎 = (𝑦𝑊) → (∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
148147rspcev 3295 . . . . . . . . 9 (((𝑦𝑊) ∈ (𝒫 (𝐴𝑊) ∩ Fin) ∧ ∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)((𝑦𝑊) ⊆ 𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)) → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))
14984, 144, 148syl6an 567 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
150149rexlimdva 3024 . . . . . . 7 (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))
15172, 150impbid 202 . . . . . 6 (𝜑 → (∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢) ↔ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
152151imbi2d 330 . . . . 5 (𝜑 → ((𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)) ↔ (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))))
153152ralbidv 2980 . . . 4 (𝜑 → (∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))))
154153anbi2d 739 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢))) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
155 eqid 2621 . . . 4 (TopOpen‘𝐺) = (TopOpen‘𝐺)
156 eqid 2621 . . . 4 (𝒫 (𝐴𝑊) ∩ Fin) = (𝒫 (𝐴𝑊) ∩ Fin)
157 tsmsres.2 . . . 4 (𝜑𝐺 ∈ TopSp)
158 inex1g 4761 . . . . 5 (𝐴𝑉 → (𝐴𝑊) ∈ V)
15948, 158syl 17 . . . 4 (𝜑 → (𝐴𝑊) ∈ V)
160 fssres 6027 . . . . . 6 ((𝐹:𝐴𝐵 ∧ (𝐴𝑊) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
16145, 1, 160sylancl 693 . . . . 5 (𝜑 → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
162 resres 5368 . . . . . . 7 ((𝐹𝐴) ↾ 𝑊) = (𝐹 ↾ (𝐴𝑊))
163 ffn 6002 . . . . . . . . 9 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
164 fnresdm 5958 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
16545, 163, 1643syl 18 . . . . . . . 8 (𝜑 → (𝐹𝐴) = 𝐹)
166165reseq1d 5355 . . . . . . 7 (𝜑 → ((𝐹𝐴) ↾ 𝑊) = (𝐹𝑊))
167162, 166syl5eqr 2669 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐴𝑊)) = (𝐹𝑊))
168167feq1d 5987 . . . . 5 (𝜑 → ((𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵 ↔ (𝐹𝑊):(𝐴𝑊)⟶𝐵))
169161, 168mpbid 222 . . . 4 (𝜑 → (𝐹𝑊):(𝐴𝑊)⟶𝐵)
17041, 155, 156, 43, 157, 159, 169eltsms 21846 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹𝑊)) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 (𝐴𝑊) ∩ Fin)∀𝑏 ∈ (𝒫 (𝐴𝑊) ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝑊) ↾ 𝑏)) ∈ 𝑢)))))
171 eqid 2621 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
17241, 155, 171, 43, 157, 48, 45eltsms 21846 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
173154, 170, 1723bitr4d 300 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹𝑊)) ↔ 𝑥 ∈ (𝐺 tsums 𝐹)))
174173eqrdv 2619 1 (𝜑 → (𝐺 tsums (𝐹𝑊)) = (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3186  cun 3553  cin 3554  wss 3555  𝒫 cpw 4130  cres 5076   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604   supp csupp 7240  Fincfn 7899  Basecbs 15781  TopOpenctopn 16003  0gc0g 16021   Σg cgsu 16022  CMndccmn 18114  TopSpctps 20619   tsums ctsu 21839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-0g 16023  df-gsum 16024  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-cntz 17671  df-cmn 18116  df-fbas 19662  df-fg 19663  df-top 20621  df-topon 20623  df-topsp 20624  df-ntr 20734  df-nei 20812  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-tsms 21840
This theorem is referenced by:  tsmssplit  21865  esumss  29912
  Copyright terms: Public domain W3C validator