MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssplit Structured version   Visualization version   GIF version

Theorem tsmssplit 21707
Description: Split a topological group sum into two parts. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmssplit.b 𝐵 = (Base‘𝐺)
tsmssplit.p + = (+g𝐺)
tsmssplit.1 (𝜑𝐺 ∈ CMnd)
tsmssplit.2 (𝜑𝐺 ∈ TopMnd)
tsmssplit.a (𝜑𝐴𝑉)
tsmssplit.f (𝜑𝐹:𝐴𝐵)
tsmssplit.x (𝜑𝑋 ∈ (𝐺 tsums (𝐹𝐶)))
tsmssplit.y (𝜑𝑌 ∈ (𝐺 tsums (𝐹𝐷)))
tsmssplit.i (𝜑 → (𝐶𝐷) = ∅)
tsmssplit.u (𝜑𝐴 = (𝐶𝐷))
Assertion
Ref Expression
tsmssplit (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums 𝐹))

Proof of Theorem tsmssplit
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 tsmssplit.b . . 3 𝐵 = (Base‘𝐺)
2 tsmssplit.p . . 3 + = (+g𝐺)
3 tsmssplit.1 . . 3 (𝜑𝐺 ∈ CMnd)
4 tsmssplit.2 . . 3 (𝜑𝐺 ∈ TopMnd)
5 tsmssplit.a . . 3 (𝜑𝐴𝑉)
6 tsmssplit.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
76ffvelrnda 6252 . . . . 5 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
8 cmnmnd 17977 . . . . . . . 8 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
93, 8syl 17 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
10 eqid 2609 . . . . . . . 8 (0g𝐺) = (0g𝐺)
111, 10mndidcl 17077 . . . . . . 7 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
129, 11syl 17 . . . . . 6 (𝜑 → (0g𝐺) ∈ 𝐵)
1312adantr 479 . . . . 5 ((𝜑𝑘𝐴) → (0g𝐺) ∈ 𝐵)
147, 13ifcld 4080 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) ∈ 𝐵)
15 eqid 2609 . . . 4 (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) = (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))
1614, 15fmptd 6277 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))):𝐴𝐵)
177, 13ifcld 4080 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) ∈ 𝐵)
18 eqid 2609 . . . 4 (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))
1917, 18fmptd 6277 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))):𝐴𝐵)
20 tsmssplit.x . . . 4 (𝜑𝑋 ∈ (𝐺 tsums (𝐹𝐶)))
216feqmptd 6144 . . . . . . . 8 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
2221reseq1d 5303 . . . . . . 7 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
23 ssun1 3737 . . . . . . . . 9 𝐶 ⊆ (𝐶𝐷)
24 tsmssplit.u . . . . . . . . 9 (𝜑𝐴 = (𝐶𝐷))
2523, 24syl5sseqr 3616 . . . . . . . 8 (𝜑𝐶𝐴)
26 iftrue 4041 . . . . . . . . . 10 (𝑘𝐶 → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
2726mpteq2ia 4662 . . . . . . . . 9 (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) = (𝑘𝐶 ↦ (𝐹𝑘))
28 resmpt 5356 . . . . . . . . 9 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶) = (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))))
29 resmpt 5356 . . . . . . . . 9 (𝐶𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶) = (𝑘𝐶 ↦ (𝐹𝑘)))
3027, 28, 293eqtr4a 2669 . . . . . . . 8 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
3125, 30syl 17 . . . . . . 7 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
3222, 31eqtr4d 2646 . . . . . 6 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶))
3332oveq2d 6543 . . . . 5 (𝜑 → (𝐺 tsums (𝐹𝐶)) = (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶)))
34 tmdtps 21632 . . . . . . 7 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
354, 34syl 17 . . . . . 6 (𝜑𝐺 ∈ TopSp)
36 eldifn 3694 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐶) → ¬ 𝑘𝐶)
3736adantl 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐶)) → ¬ 𝑘𝐶)
3837iffalsed 4046 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐶)) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
3938, 5suppss2 7193 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) supp (0g𝐺)) ⊆ 𝐶)
401, 10, 3, 35, 5, 16, 39tsmsres 21699 . . . . 5 (𝜑 → (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))))
4133, 40eqtrd 2643 . . . 4 (𝜑 → (𝐺 tsums (𝐹𝐶)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))))
4220, 41eleqtrd 2689 . . 3 (𝜑𝑋 ∈ (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))))
43 tsmssplit.y . . . 4 (𝜑𝑌 ∈ (𝐺 tsums (𝐹𝐷)))
4421reseq1d 5303 . . . . . . 7 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
45 ssun2 3738 . . . . . . . . 9 𝐷 ⊆ (𝐶𝐷)
4645, 24syl5sseqr 3616 . . . . . . . 8 (𝜑𝐷𝐴)
47 iftrue 4041 . . . . . . . . . 10 (𝑘𝐷 → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
4847mpteq2ia 4662 . . . . . . . . 9 (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝑘𝐷 ↦ (𝐹𝑘))
49 resmpt 5356 . . . . . . . . 9 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷) = (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))
50 resmpt 5356 . . . . . . . . 9 (𝐷𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷) = (𝑘𝐷 ↦ (𝐹𝑘)))
5148, 49, 503eqtr4a 2669 . . . . . . . 8 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
5246, 51syl 17 . . . . . . 7 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
5344, 52eqtr4d 2646 . . . . . 6 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷))
5453oveq2d 6543 . . . . 5 (𝜑 → (𝐺 tsums (𝐹𝐷)) = (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷)))
55 eldifn 3694 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐷) → ¬ 𝑘𝐷)
5655adantl 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐷)) → ¬ 𝑘𝐷)
5756iffalsed 4046 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐷)) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
5857, 5suppss2 7193 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) supp (0g𝐺)) ⊆ 𝐷)
591, 10, 3, 35, 5, 19, 58tsmsres 21699 . . . . 5 (𝜑 → (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
6054, 59eqtrd 2643 . . . 4 (𝜑 → (𝐺 tsums (𝐹𝐷)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
6143, 60eleqtrd 2689 . . 3 (𝜑𝑌 ∈ (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
621, 2, 3, 4, 5, 16, 19, 42, 61tsmsadd 21702 . 2 (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘𝑓 + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))))
6326adantl 480 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
64 tsmssplit.i . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐷) = ∅)
65 noel 3877 . . . . . . . . . . . . . . . 16 ¬ 𝑘 ∈ ∅
66 eleq2 2676 . . . . . . . . . . . . . . . 16 ((𝐶𝐷) = ∅ → (𝑘 ∈ (𝐶𝐷) ↔ 𝑘 ∈ ∅))
6765, 66mtbiri 315 . . . . . . . . . . . . . . 15 ((𝐶𝐷) = ∅ → ¬ 𝑘 ∈ (𝐶𝐷))
6864, 67syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑘 ∈ (𝐶𝐷))
6968adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ¬ 𝑘 ∈ (𝐶𝐷))
70 elin 3757 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
7169, 70sylnib 316 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ¬ (𝑘𝐶𝑘𝐷))
72 imnan 436 . . . . . . . . . . . 12 ((𝑘𝐶 → ¬ 𝑘𝐷) ↔ ¬ (𝑘𝐶𝑘𝐷))
7371, 72sylibr 222 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐶 → ¬ 𝑘𝐷))
7473imp 443 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ¬ 𝑘𝐷)
7574iffalsed 4046 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
7663, 75oveq12d 6545 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = ((𝐹𝑘) + (0g𝐺)))
771, 2, 10mndrid 17081 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
789, 77sylan 486 . . . . . . . . . 10 ((𝜑 ∧ (𝐹𝑘) ∈ 𝐵) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
797, 78syldan 485 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
8079adantr 479 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
8176, 80eqtrd 2643 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝐹𝑘))
8273con2d 127 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐷 → ¬ 𝑘𝐶))
8382imp 443 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ¬ 𝑘𝐶)
8483iffalsed 4046 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
8547adantl 480 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
8684, 85oveq12d 6545 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = ((0g𝐺) + (𝐹𝑘)))
871, 2, 10mndlid 17080 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
889, 87sylan 486 . . . . . . . . . 10 ((𝜑 ∧ (𝐹𝑘) ∈ 𝐵) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
897, 88syldan 485 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
9089adantr 479 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
9186, 90eqtrd 2643 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝐹𝑘))
9224eleq2d 2672 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝑘 ∈ (𝐶𝐷)))
93 elun 3714 . . . . . . . . 9 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
9492, 93syl6bb 274 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↔ (𝑘𝐶𝑘𝐷)))
9594biimpa 499 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑘𝐶𝑘𝐷))
9681, 91, 95mpjaodan 822 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝐹𝑘))
9796mpteq2dva 4666 . . . . 5 (𝜑 → (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))) = (𝑘𝐴 ↦ (𝐹𝑘)))
9821, 97eqtr4d 2646 . . . 4 (𝜑𝐹 = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
99 eqidd 2610 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) = (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))))
100 eqidd 2610 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))
1015, 14, 17, 99, 100offval2 6789 . . . 4 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘𝑓 + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))) = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
10298, 101eqtr4d 2646 . . 3 (𝜑𝐹 = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘𝑓 + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
103102oveq2d 6543 . 2 (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘𝑓 + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))))
10462, 103eleqtrrd 2690 1 (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 381  wa 382   = wceq 1474  wcel 1976  cdif 3536  cun 3537  cin 3538  wss 3539  c0 3873  ifcif 4035  cmpt 4637  cres 5030  wf 5786  cfv 5790  (class class class)co 6527  𝑓 cof 6770  Basecbs 15641  +gcplusg 15714  0gc0g 15869  Mndcmnd 17063  CMndccmn 17962  TopSpctps 20461  TopMndctmd 21626   tsums ctsu 21681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290  df-seq 12619  df-hash 12935  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-0g 15871  df-gsum 15872  df-topgen 15873  df-plusf 17010  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-cntz 17519  df-cmn 17964  df-fbas 19510  df-fg 19511  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-ntr 20576  df-nei 20654  df-cn 20783  df-cnp 20784  df-tx 21117  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-tmd 21628  df-tsms 21682
This theorem is referenced by:  esumsplit  29248
  Copyright terms: Public domain W3C validator