MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssubm Structured version   Visualization version   GIF version

Theorem tsmssubm 21869
Description: Evaluate an infinite group sum in a submonoid. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmssubm.a (𝜑𝐴𝑉)
tsmssubm.1 (𝜑𝐺 ∈ CMnd)
tsmssubm.2 (𝜑𝐺 ∈ TopSp)
tsmssubm.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
tsmssubm.f (𝜑𝐹:𝐴𝑆)
tsmssubm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
tsmssubm (𝜑 → (𝐻 tsums 𝐹) = ((𝐺 tsums 𝐹) ∩ 𝑆))

Proof of Theorem tsmssubm
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmssubm.s . . . . . 6 (𝜑𝑆 ∈ (SubMnd‘𝐺))
2 tsmssubm.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
32submbas 17287 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
41, 3syl 17 . . . . 5 (𝜑𝑆 = (Base‘𝐻))
54eleq2d 2684 . . . 4 (𝜑 → (𝑥𝑆𝑥 ∈ (Base‘𝐻)))
65anbi1d 740 . . 3 (𝜑 → ((𝑥𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣))) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
7 elin 3779 . . . . 5 (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥 ∈ (𝐺 tsums 𝐹) ∧ 𝑥𝑆))
8 ancom 466 . . . . 5 ((𝑥 ∈ (𝐺 tsums 𝐹) ∧ 𝑥𝑆) ↔ (𝑥𝑆𝑥 ∈ (𝐺 tsums 𝐹)))
97, 8bitri 264 . . . 4 (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥𝑆𝑥 ∈ (𝐺 tsums 𝐹)))
10 eqid 2621 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
1110submss 17282 . . . . . . . . 9 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
121, 11syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ (Base‘𝐺))
1312sselda 3587 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑥 ∈ (Base‘𝐺))
14 eqid 2621 . . . . . . . . 9 (TopOpen‘𝐺) = (TopOpen‘𝐺)
15 eqid 2621 . . . . . . . . 9 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
16 tsmssubm.1 . . . . . . . . 9 (𝜑𝐺 ∈ CMnd)
17 tsmssubm.2 . . . . . . . . 9 (𝜑𝐺 ∈ TopSp)
18 tsmssubm.a . . . . . . . . 9 (𝜑𝐴𝑉)
19 tsmssubm.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝑆)
2019, 12fssd 6019 . . . . . . . . 9 (𝜑𝐹:𝐴⟶(Base‘𝐺))
2110, 14, 15, 16, 17, 18, 20eltsms 21859 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
2221baibd 947 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
2313, 22syldan 487 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
24 vex 3192 . . . . . . . . 9 𝑢 ∈ V
2524inex1 4764 . . . . . . . 8 (𝑢𝑆) ∈ V
2625a1i 11 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝑢 ∈ (TopOpen‘𝐺)) → (𝑢𝑆) ∈ V)
272, 14resstopn 20913 . . . . . . . . 9 ((TopOpen‘𝐺) ↾t 𝑆) = (TopOpen‘𝐻)
2827eleq2i 2690 . . . . . . . 8 (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ 𝑣 ∈ (TopOpen‘𝐻))
29 fvex 6163 . . . . . . . . . 10 (TopOpen‘𝐺) ∈ V
30 elrest 16020 . . . . . . . . . 10 (((TopOpen‘𝐺) ∈ V ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
3129, 1, 30sylancr 694 . . . . . . . . 9 (𝜑 → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
3231adantr 481 . . . . . . . 8 ((𝜑𝑥𝑆) → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
3328, 32syl5bbr 274 . . . . . . 7 ((𝜑𝑥𝑆) → (𝑣 ∈ (TopOpen‘𝐻) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
34 eleq2 2687 . . . . . . . . 9 (𝑣 = (𝑢𝑆) → (𝑥𝑣𝑥 ∈ (𝑢𝑆)))
35 elin 3779 . . . . . . . . . . 11 (𝑥 ∈ (𝑢𝑆) ↔ (𝑥𝑢𝑥𝑆))
3635rbaib 946 . . . . . . . . . 10 (𝑥𝑆 → (𝑥 ∈ (𝑢𝑆) ↔ 𝑥𝑢))
3736adantl 482 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝑢𝑆) ↔ 𝑥𝑢))
3834, 37sylan9bbr 736 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → (𝑥𝑣𝑥𝑢))
39 eleq2 2687 . . . . . . . . . . . . 13 (𝑣 = (𝑢𝑆) → ((𝐻 Σg (𝐹𝑦)) ∈ 𝑣 ↔ (𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆)))
40 eqid 2621 . . . . . . . . . . . . . . . . 17 (Base‘𝐻) = (Base‘𝐻)
41 eqid 2621 . . . . . . . . . . . . . . . . 17 (0g𝐻) = (0g𝐻)
422submmnd 17286 . . . . . . . . . . . . . . . . . . . 20 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd)
431, 42syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐻 ∈ Mnd)
442subcmn 18174 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd)
4516, 43, 44syl2anc 692 . . . . . . . . . . . . . . . . . 18 (𝜑𝐻 ∈ CMnd)
4645ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ CMnd)
47 elfpw 8220 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
4847simprbi 480 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
4948adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
5019ad2antrr 761 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴𝑆)
5147simplbi 476 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
5251adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
5350, 52fssresd 6033 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦):𝑦𝑆)
544ad2antrr 761 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑆 = (Base‘𝐻))
5554feq3d 5994 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑦):𝑦𝑆 ↔ (𝐹𝑦):𝑦⟶(Base‘𝐻)))
5653, 55mpbid 222 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦):𝑦⟶(Base‘𝐻))
57 fvex 6163 . . . . . . . . . . . . . . . . . . 19 (0g𝐻) ∈ V
5857a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (0g𝐻) ∈ V)
5953, 49, 58fdmfifsupp 8237 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) finSupp (0g𝐻))
6040, 41, 46, 49, 56, 59gsumcl 18248 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐹𝑦)) ∈ (Base‘𝐻))
6160, 54eleqtrrd 2701 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐹𝑦)) ∈ 𝑆)
62 elin 3779 . . . . . . . . . . . . . . . 16 ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ ((𝐻 Σg (𝐹𝑦)) ∈ 𝑢 ∧ (𝐻 Σg (𝐹𝑦)) ∈ 𝑆))
6362rbaib 946 . . . . . . . . . . . . . . 15 ((𝐻 Σg (𝐹𝑦)) ∈ 𝑆 → ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ (𝐻 Σg (𝐹𝑦)) ∈ 𝑢))
6461, 63syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ (𝐻 Σg (𝐹𝑦)) ∈ 𝑢))
651ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑆 ∈ (SubMnd‘𝐺))
6649, 65, 53, 2gsumsubm 17305 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑦)) = (𝐻 Σg (𝐹𝑦)))
6766eleq1d 2683 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹𝑦)) ∈ 𝑢 ↔ (𝐻 Σg (𝐹𝑦)) ∈ 𝑢))
6864, 67bitr4d 271 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
6939, 68sylan9bbr 736 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑣 = (𝑢𝑆)) → ((𝐻 Σg (𝐹𝑦)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
7069an32s 845 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹𝑦)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
7170imbi2d 330 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣) ↔ (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
7271ralbidva 2980 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣) ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
7372rexbidv 3046 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → (∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣) ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
7438, 73imbi12d 334 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → ((𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)) ↔ (𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
7526, 33, 74ralxfr2d 4847 . . . . . 6 ((𝜑𝑥𝑆) → (∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
7623, 75bitr4d 271 . . . . 5 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣))))
7776pm5.32da 672 . . . 4 (𝜑 → ((𝑥𝑆𝑥 ∈ (𝐺 tsums 𝐹)) ↔ (𝑥𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
789, 77syl5bb 272 . . 3 (𝜑 → (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
79 eqid 2621 . . . 4 (TopOpen‘𝐻) = (TopOpen‘𝐻)
80 resstps 20914 . . . . . 6 ((𝐺 ∈ TopSp ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝐺s 𝑆) ∈ TopSp)
8117, 1, 80syl2anc 692 . . . . 5 (𝜑 → (𝐺s 𝑆) ∈ TopSp)
822, 81syl5eqel 2702 . . . 4 (𝜑𝐻 ∈ TopSp)
834feq3d 5994 . . . . 5 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘𝐻)))
8419, 83mpbid 222 . . . 4 (𝜑𝐹:𝐴⟶(Base‘𝐻))
8540, 79, 15, 45, 82, 18, 84eltsms 21859 . . 3 (𝜑 → (𝑥 ∈ (𝐻 tsums 𝐹) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
866, 78, 853bitr4rd 301 . 2 (𝜑 → (𝑥 ∈ (𝐻 tsums 𝐹) ↔ 𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆)))
8786eqrdv 2619 1 (𝜑 → (𝐻 tsums 𝐹) = ((𝐺 tsums 𝐹) ∩ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3189  cin 3558  wss 3559  𝒫 cpw 4135  cres 5081  wf 5848  cfv 5852  (class class class)co 6610  Fincfn 7907  Basecbs 15792  s cress 15793  t crest 16013  TopOpenctopn 16014  0gc0g 16032   Σg cgsu 16033  Mndcmnd 17226  SubMndcsubmnd 17266  CMndccmn 18125  TopSpctps 20660   tsums ctsu 21852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-fzo 12415  df-seq 12750  df-hash 13066  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-tset 15892  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-cntz 17682  df-cmn 18127  df-fbas 19675  df-fg 19676  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-ntr 20747  df-nei 20825  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-tsms 21853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator