MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsxplem2 Structured version   Visualization version   GIF version

Theorem tsmsxplem2 21867
Description: Lemma for tsmsxp 21868. (Contributed by Mario Carneiro, 21-Sep-2015.)
Hypotheses
Ref Expression
tsmsxp.b 𝐵 = (Base‘𝐺)
tsmsxp.g (𝜑𝐺 ∈ CMnd)
tsmsxp.2 (𝜑𝐺 ∈ TopGrp)
tsmsxp.a (𝜑𝐴𝑉)
tsmsxp.c (𝜑𝐶𝑊)
tsmsxp.f (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
tsmsxp.h (𝜑𝐻:𝐴𝐵)
tsmsxp.1 ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
tsmsxp.j 𝐽 = (TopOpen‘𝐺)
tsmsxp.z 0 = (0g𝐺)
tsmsxp.p + = (+g𝐺)
tsmsxp.m = (-g𝐺)
tsmsxp.l (𝜑𝐿𝐽)
tsmsxp.3 (𝜑0𝐿)
tsmsxp.k (𝜑𝐾 ∈ (𝒫 𝐴 ∩ Fin))
tsmsxp.4 (𝜑 → ∀𝑐𝑆𝑑𝑇 (𝑐 + 𝑑) ∈ 𝑈)
tsmsxp.n (𝜑𝑁 ∈ (𝒫 𝐶 ∩ Fin))
tsmsxp.s (𝜑𝐷 ⊆ (𝐾 × 𝑁))
tsmsxp.x (𝜑 → ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿)
tsmsxp.5 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆)
tsmsxp.6 (𝜑 → ∀𝑔 ∈ (𝐿𝑚 𝐾)(𝐺 Σg 𝑔) ∈ 𝑇)
Assertion
Ref Expression
tsmsxplem2 (𝜑 → (𝐺 Σg (𝐻𝐾)) ∈ 𝑈)
Distinct variable groups:   𝑔,𝑘, 0   𝑐,𝑑,𝑔,𝑗,𝑘,𝑥,𝐺   𝐵,𝑔,𝑘   𝐷,𝑔,𝑗,𝑘,𝑥   𝑔,𝐿,𝑗,𝑥   𝐴,𝑔,𝑗,𝑘   𝐾,𝑐,𝑑,𝑔,𝑗,𝑘,𝑥   𝑆,𝑐   𝐻,𝑑,𝑔,𝑗,𝑘,𝑥   𝑁,𝑐,𝑑,𝑔,𝑥   𝑈,𝑐,𝑑   ,𝑑,𝑔,𝑗,𝑥   𝐶,𝑔,𝑗,𝑘   𝑇,𝑐,𝑑,𝑔   + ,𝑐,𝑑,𝑔   𝐹,𝑐,𝑑,𝑔,𝑗,𝑘,𝑥   𝜑,𝑔,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑐,𝑑)   𝐴(𝑥,𝑐,𝑑)   𝐵(𝑥,𝑗,𝑐,𝑑)   𝐶(𝑥,𝑐,𝑑)   𝐷(𝑐,𝑑)   + (𝑥,𝑗,𝑘)   𝑆(𝑥,𝑔,𝑗,𝑘,𝑑)   𝑇(𝑥,𝑗,𝑘)   𝑈(𝑥,𝑔,𝑗,𝑘)   𝐻(𝑐)   𝐽(𝑥,𝑔,𝑗,𝑘,𝑐,𝑑)   𝐿(𝑘,𝑐,𝑑)   (𝑘,𝑐)   𝑁(𝑗,𝑘)   𝑉(𝑥,𝑔,𝑗,𝑘,𝑐,𝑑)   𝑊(𝑥,𝑔,𝑗,𝑘,𝑐,𝑑)   0 (𝑥,𝑗,𝑐,𝑑)

Proof of Theorem tsmsxplem2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsxp.2 . . . . 5 (𝜑𝐺 ∈ TopGrp)
2 tgpgrp 21792 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
31, 2syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
4 tsmsxp.g . . . 4 (𝜑𝐺 ∈ CMnd)
5 isabl 18118 . . . 4 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
63, 4, 5sylanbrc 697 . . 3 (𝜑𝐺 ∈ Abel)
7 tsmsxp.b . . . 4 𝐵 = (Base‘𝐺)
8 tsmsxp.z . . . 4 0 = (0g𝐺)
9 tsmsxp.k . . . . . 6 (𝜑𝐾 ∈ (𝒫 𝐴 ∩ Fin))
10 elfpw 8212 . . . . . . 7 (𝐾 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐾𝐴𝐾 ∈ Fin))
1110simprbi 480 . . . . . 6 (𝐾 ∈ (𝒫 𝐴 ∩ Fin) → 𝐾 ∈ Fin)
129, 11syl 17 . . . . 5 (𝜑𝐾 ∈ Fin)
13 tsmsxp.n . . . . . 6 (𝜑𝑁 ∈ (𝒫 𝐶 ∩ Fin))
14 elfpw 8212 . . . . . . 7 (𝑁 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑁𝐶𝑁 ∈ Fin))
1514simprbi 480 . . . . . 6 (𝑁 ∈ (𝒫 𝐶 ∩ Fin) → 𝑁 ∈ Fin)
1613, 15syl 17 . . . . 5 (𝜑𝑁 ∈ Fin)
17 xpfi 8175 . . . . 5 ((𝐾 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐾 × 𝑁) ∈ Fin)
1812, 16, 17syl2anc 692 . . . 4 (𝜑 → (𝐾 × 𝑁) ∈ Fin)
19 tsmsxp.f . . . . 5 (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
2010simplbi 476 . . . . . . 7 (𝐾 ∈ (𝒫 𝐴 ∩ Fin) → 𝐾𝐴)
219, 20syl 17 . . . . . 6 (𝜑𝐾𝐴)
2214simplbi 476 . . . . . . 7 (𝑁 ∈ (𝒫 𝐶 ∩ Fin) → 𝑁𝐶)
2313, 22syl 17 . . . . . 6 (𝜑𝑁𝐶)
24 xpss12 5186 . . . . . 6 ((𝐾𝐴𝑁𝐶) → (𝐾 × 𝑁) ⊆ (𝐴 × 𝐶))
2521, 23, 24syl2anc 692 . . . . 5 (𝜑 → (𝐾 × 𝑁) ⊆ (𝐴 × 𝐶))
2619, 25fssresd 6028 . . . 4 (𝜑 → (𝐹 ↾ (𝐾 × 𝑁)):(𝐾 × 𝑁)⟶𝐵)
27 tsmsxp.3 . . . . 5 (𝜑0𝐿)
2826, 18, 27fdmfifsupp 8229 . . . 4 (𝜑 → (𝐹 ↾ (𝐾 × 𝑁)) finSupp 0 )
297, 8, 4, 18, 26, 28gsumcl 18237 . . 3 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝐵)
30 tsmsxp.h . . . . 5 (𝜑𝐻:𝐴𝐵)
3130, 21fssresd 6028 . . . 4 (𝜑 → (𝐻𝐾):𝐾𝐵)
3231, 12, 27fdmfifsupp 8229 . . . 4 (𝜑 → (𝐻𝐾) finSupp 0 )
337, 8, 4, 12, 31, 32gsumcl 18237 . . 3 (𝜑 → (𝐺 Σg (𝐻𝐾)) ∈ 𝐵)
34 tsmsxp.p . . . 4 + = (+g𝐺)
35 tsmsxp.m . . . 4 = (-g𝐺)
367, 34, 35ablpncan3 18143 . . 3 ((𝐺 ∈ Abel ∧ ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝐵 ∧ (𝐺 Σg (𝐻𝐾)) ∈ 𝐵)) → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) = (𝐺 Σg (𝐻𝐾)))
376, 29, 33, 36syl12anc 1321 . 2 (𝜑 → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) = (𝐺 Σg (𝐻𝐾)))
38 tsmsxp.5 . . 3 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆)
394adantr 481 . . . . . . . 8 ((𝜑𝑦𝐾) → 𝐺 ∈ CMnd)
40 snfi 7982 . . . . . . . . 9 {𝑦} ∈ Fin
4116adantr 481 . . . . . . . . 9 ((𝜑𝑦𝐾) → 𝑁 ∈ Fin)
42 xpfi 8175 . . . . . . . . 9 (({𝑦} ∈ Fin ∧ 𝑁 ∈ Fin) → ({𝑦} × 𝑁) ∈ Fin)
4340, 41, 42sylancr 694 . . . . . . . 8 ((𝜑𝑦𝐾) → ({𝑦} × 𝑁) ∈ Fin)
4419adantr 481 . . . . . . . . 9 ((𝜑𝑦𝐾) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
4521sselda 3583 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → 𝑦𝐴)
4645snssd 4309 . . . . . . . . . 10 ((𝜑𝑦𝐾) → {𝑦} ⊆ 𝐴)
4723adantr 481 . . . . . . . . . 10 ((𝜑𝑦𝐾) → 𝑁𝐶)
48 xpss12 5186 . . . . . . . . . 10 (({𝑦} ⊆ 𝐴𝑁𝐶) → ({𝑦} × 𝑁) ⊆ (𝐴 × 𝐶))
4946, 47, 48syl2anc 692 . . . . . . . . 9 ((𝜑𝑦𝐾) → ({𝑦} × 𝑁) ⊆ (𝐴 × 𝐶))
5044, 49fssresd 6028 . . . . . . . 8 ((𝜑𝑦𝐾) → (𝐹 ↾ ({𝑦} × 𝑁)):({𝑦} × 𝑁)⟶𝐵)
51 fvex 6158 . . . . . . . . . . 11 (0g𝐺) ∈ V
528, 51eqeltri 2694 . . . . . . . . . 10 0 ∈ V
5352a1i 11 . . . . . . . . 9 ((𝜑𝑦𝐾) → 0 ∈ V)
5450, 43, 53fdmfifsupp 8229 . . . . . . . 8 ((𝜑𝑦𝐾) → (𝐹 ↾ ({𝑦} × 𝑁)) finSupp 0 )
557, 8, 39, 43, 50, 54gsumcl 18237 . . . . . . 7 ((𝜑𝑦𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) ∈ 𝐵)
56 eqid 2621 . . . . . . 7 (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) = (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))
5755, 56fmptd 6340 . . . . . 6 (𝜑 → (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))):𝐾𝐵)
58 ovex 6632 . . . . . . . 8 (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) ∈ V
5958a1i 11 . . . . . . 7 ((𝜑𝑦𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) ∈ V)
6056, 12, 59, 27fsuppmptdm 8230 . . . . . 6 (𝜑 → (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) finSupp 0 )
617, 8, 35, 6, 12, 31, 57, 32, 60gsumsub 18269 . . . . 5 (𝜑 → (𝐺 Σg ((𝐻𝐾) ∘𝑓 (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))))
62 fvex 6158 . . . . . . . 8 (𝐻𝑦) ∈ V
6362a1i 11 . . . . . . 7 ((𝜑𝑦𝐾) → (𝐻𝑦) ∈ V)
6430, 21feqresmpt 6207 . . . . . . 7 (𝜑 → (𝐻𝐾) = (𝑦𝐾 ↦ (𝐻𝑦)))
65 eqidd 2622 . . . . . . 7 (𝜑 → (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) = (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))
6612, 63, 59, 64, 65offval2 6867 . . . . . 6 (𝜑 → ((𝐻𝐾) ∘𝑓 (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))))
6766oveq2d 6620 . . . . 5 (𝜑 → (𝐺 Σg ((𝐻𝐾) ∘𝑓 (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))))
68 cmnmnd 18129 . . . . . . . . . . . 12 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
6939, 68syl 17 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → 𝐺 ∈ Mnd)
70 simpr 477 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → 𝑦𝐾)
7144adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → 𝐹:(𝐴 × 𝐶)⟶𝐵)
7245adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → 𝑦𝐴)
7347sselda 3583 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → 𝑧𝐶)
7471, 72, 73fovrnd 6759 . . . . . . . . . . . . 13 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → (𝑦𝐹𝑧) ∈ 𝐵)
75 eqid 2621 . . . . . . . . . . . . 13 (𝑧𝑁 ↦ (𝑦𝐹𝑧)) = (𝑧𝑁 ↦ (𝑦𝐹𝑧))
7674, 75fmptd 6340 . . . . . . . . . . . 12 ((𝜑𝑦𝐾) → (𝑧𝑁 ↦ (𝑦𝐹𝑧)):𝑁𝐵)
77 ovex 6632 . . . . . . . . . . . . . 14 (𝑦𝐹𝑧) ∈ V
7877a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → (𝑦𝐹𝑧) ∈ V)
7975, 41, 78, 53fsuppmptdm 8230 . . . . . . . . . . . 12 ((𝜑𝑦𝐾) → (𝑧𝑁 ↦ (𝑦𝐹𝑧)) finSupp 0 )
807, 8, 39, 41, 76, 79gsumcl 18237 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))) ∈ 𝐵)
81 velsn 4164 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑦} ↔ 𝑤 = 𝑦)
82 ovres 6753 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ {𝑦} ∧ 𝑧𝑁) → (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧) = (𝑤𝐹𝑧))
8381, 82sylanbr 490 . . . . . . . . . . . . . . 15 ((𝑤 = 𝑦𝑧𝑁) → (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧) = (𝑤𝐹𝑧))
84 oveq1 6611 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → (𝑤𝐹𝑧) = (𝑦𝐹𝑧))
8584adantr 481 . . . . . . . . . . . . . . 15 ((𝑤 = 𝑦𝑧𝑁) → (𝑤𝐹𝑧) = (𝑦𝐹𝑧))
8683, 85eqtrd 2655 . . . . . . . . . . . . . 14 ((𝑤 = 𝑦𝑧𝑁) → (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧) = (𝑦𝐹𝑧))
8786mpteq2dva 4704 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝑧𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧)) = (𝑧𝑁 ↦ (𝑦𝐹𝑧)))
8887oveq2d 6620 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝐺 Σg (𝑧𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))) = (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))))
897, 88gsumsn 18275 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑦𝐾 ∧ (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))) ∈ 𝐵) → (𝐺 Σg (𝑤 ∈ {𝑦} ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))))) = (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))))
9069, 70, 80, 89syl3anc 1323 . . . . . . . . . 10 ((𝜑𝑦𝐾) → (𝐺 Σg (𝑤 ∈ {𝑦} ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))))) = (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))))
9140a1i 11 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → {𝑦} ∈ Fin)
927, 8, 39, 91, 41, 50, 54gsumxp 18296 . . . . . . . . . 10 ((𝜑𝑦𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) = (𝐺 Σg (𝑤 ∈ {𝑦} ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑤(𝐹 ↾ ({𝑦} × 𝑁))𝑧))))))
93 ovres 6753 . . . . . . . . . . . . 13 ((𝑦𝐾𝑧𝑁) → (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧) = (𝑦𝐹𝑧))
9493adantll 749 . . . . . . . . . . . 12 (((𝜑𝑦𝐾) ∧ 𝑧𝑁) → (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧) = (𝑦𝐹𝑧))
9594mpteq2dva 4704 . . . . . . . . . . 11 ((𝜑𝑦𝐾) → (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧)) = (𝑧𝑁 ↦ (𝑦𝐹𝑧)))
9695oveq2d 6620 . . . . . . . . . 10 ((𝜑𝑦𝐾) → (𝐺 Σg (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))) = (𝐺 Σg (𝑧𝑁 ↦ (𝑦𝐹𝑧))))
9790, 92, 963eqtr4d 2665 . . . . . . . . 9 ((𝜑𝑦𝐾) → (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))) = (𝐺 Σg (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))))
9897mpteq2dva 4704 . . . . . . . 8 (𝜑 → (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) = (𝑦𝐾 ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧)))))
9998oveq2d 6620 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))))))
1007, 8, 4, 12, 16, 26, 28gsumxp 18296 . . . . . . 7 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) = (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝑧𝑁 ↦ (𝑦(𝐹 ↾ (𝐾 × 𝑁))𝑧))))))
10199, 100eqtr4d 2658 . . . . . 6 (𝜑 → (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))
102101oveq2d 6620 . . . . 5 (𝜑 → ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝑦𝐾 ↦ (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))))
10361, 67, 1023eqtr3d 2663 . . . 4 (𝜑 → (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) = ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))))
104 tsmsxp.x . . . . . . . 8 (𝜑 → ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿)
105 fveq2 6148 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
106 sneq 4158 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → {𝑥} = {𝑦})
107106xpeq1d 5098 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ({𝑥} × 𝑁) = ({𝑦} × 𝑁))
108107reseq2d 5356 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐹 ↾ ({𝑥} × 𝑁)) = (𝐹 ↾ ({𝑦} × 𝑁)))
109108oveq2d 6620 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁))) = (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))
110105, 109oveq12d 6622 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) = ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))
111110eleq1d 2683 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿 ↔ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) ∈ 𝐿))
112111rspccva 3294 . . . . . . . 8 ((∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿𝑦𝐾) → ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) ∈ 𝐿)
113104, 112sylan 488 . . . . . . 7 ((𝜑𝑦𝐾) → ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))) ∈ 𝐿)
114 eqid 2621 . . . . . . 7 (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) = (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))
115113, 114fmptd 6340 . . . . . 6 (𝜑 → (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))):𝐾𝐿)
116 tsmsxp.l . . . . . . 7 (𝜑𝐿𝐽)
117116, 9elmapd 7816 . . . . . 6 (𝜑 → ((𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) ∈ (𝐿𝑚 𝐾) ↔ (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))):𝐾𝐿))
118115, 117mpbird 247 . . . . 5 (𝜑 → (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) ∈ (𝐿𝑚 𝐾))
119 tsmsxp.6 . . . . 5 (𝜑 → ∀𝑔 ∈ (𝐿𝑚 𝐾)(𝐺 Σg 𝑔) ∈ 𝑇)
120 oveq2 6612 . . . . . . 7 (𝑔 = (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) → (𝐺 Σg 𝑔) = (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))))
121120eleq1d 2683 . . . . . 6 (𝑔 = (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) → ((𝐺 Σg 𝑔) ∈ 𝑇 ↔ (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) ∈ 𝑇))
122121rspcv 3291 . . . . 5 ((𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁))))) ∈ (𝐿𝑚 𝐾) → (∀𝑔 ∈ (𝐿𝑚 𝐾)(𝐺 Σg 𝑔) ∈ 𝑇 → (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) ∈ 𝑇))
123118, 119, 122sylc 65 . . . 4 (𝜑 → (𝐺 Σg (𝑦𝐾 ↦ ((𝐻𝑦) (𝐺 Σg (𝐹 ↾ ({𝑦} × 𝑁)))))) ∈ 𝑇)
124103, 123eqeltrrd 2699 . . 3 (𝜑 → ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) ∈ 𝑇)
125 tsmsxp.4 . . 3 (𝜑 → ∀𝑐𝑆𝑑𝑇 (𝑐 + 𝑑) ∈ 𝑈)
126 oveq1 6611 . . . . 5 (𝑐 = (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) → (𝑐 + 𝑑) = ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑))
127126eleq1d 2683 . . . 4 (𝑐 = (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) → ((𝑐 + 𝑑) ∈ 𝑈 ↔ ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑) ∈ 𝑈))
128 oveq2 6612 . . . . 5 (𝑑 = ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑) = ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))))
129128eleq1d 2683 . . . 4 (𝑑 = ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) → (((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + 𝑑) ∈ 𝑈 ↔ ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) ∈ 𝑈))
130127, 129rspc2va 3307 . . 3 ((((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆 ∧ ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁)))) ∈ 𝑇) ∧ ∀𝑐𝑆𝑑𝑇 (𝑐 + 𝑑) ∈ 𝑈) → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) ∈ 𝑈)
13138, 124, 125, 130syl21anc 1322 . 2 (𝜑 → ((𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) + ((𝐺 Σg (𝐻𝐾)) (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))))) ∈ 𝑈)
13237, 131eqeltrrd 2699 1 (𝜑 → (𝐺 Σg (𝐻𝐾)) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  cin 3554  wss 3555  𝒫 cpw 4130  {csn 4148  cmpt 4673   × cxp 5072  cres 5076  wf 5843  cfv 5847  (class class class)co 6604  𝑓 cof 6848  𝑚 cmap 7802  Fincfn 7899  Basecbs 15781  +gcplusg 15862  TopOpenctopn 16003  0gc0g 16021   Σg cgsu 16022  Mndcmnd 17215  Grpcgrp 17343  -gcsg 17345  CMndccmn 18114  Abelcabl 18115  TopGrpctgp 21785   tsums ctsu 21839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-gsum 16024  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-tgp 21787
This theorem is referenced by:  tsmsxp  21868
  Copyright terms: Public domain W3C validator