MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgitvval Structured version   Visualization version   GIF version

Theorem ttgitvval 26662
Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgitvval.i 𝐼 = (Itv‘𝐺)
ttgitvval.b 𝑃 = (Base‘𝐻)
ttgitvval.m = (-g𝐻)
ttgitvval.s · = ( ·𝑠𝐻)
Assertion
Ref Expression
ttgitvval ((𝐻𝑉𝑋𝑃𝑌𝑃) → (𝑋𝐼𝑌) = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
Distinct variable groups:   𝑧,𝑘,   𝑧, ·   𝑘,𝐻,𝑧   𝑃,𝑘,𝑧   𝑘,𝑉,𝑧   𝑘,𝑋,𝑧   𝑘,𝑌,𝑧
Allowed substitution hints:   · (𝑘)   𝐺(𝑧,𝑘)   𝐼(𝑧,𝑘)

Proof of Theorem ttgitvval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttgval.n . . . . 5 𝐺 = (toTG‘𝐻)
2 ttgitvval.b . . . . 5 𝑃 = (Base‘𝐻)
3 ttgitvval.m . . . . 5 = (-g𝐻)
4 ttgitvval.s . . . . 5 · = ( ·𝑠𝐻)
5 ttgitvval.i . . . . 5 𝐼 = (Itv‘𝐺)
61, 2, 3, 4, 5ttgval 26655 . . . 4 (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
76simprd 498 . . 3 (𝐻𝑉𝐼 = (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
873ad2ant1 1129 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → 𝐼 = (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
9 simprl 769 . . . . . 6 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
109oveq2d 7166 . . . . 5 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑧 𝑥) = (𝑧 𝑋))
11 simprr 771 . . . . . . 7 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
1211, 9oveq12d 7168 . . . . . 6 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑦 𝑥) = (𝑌 𝑋))
1312oveq2d 7166 . . . . 5 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑘 · (𝑦 𝑥)) = (𝑘 · (𝑌 𝑋)))
1410, 13eqeq12d 2837 . . . 4 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑧 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ (𝑧 𝑋) = (𝑘 · (𝑌 𝑋))))
1514rexbidv 3297 . . 3 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))))
1615rabbidv 3480 . 2 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))} = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
17 simp2 1133 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → 𝑋𝑃)
18 simp3 1134 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → 𝑌𝑃)
192fvexi 6678 . . . 4 𝑃 ∈ V
2019rabex 5227 . . 3 {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))} ∈ V
2120a1i 11 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))} ∈ V)
228, 16, 17, 18, 21ovmpod 7296 1 ((𝐻𝑉𝑋𝑃𝑌𝑃) → (𝑋𝐼𝑌) = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3o 1082  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  {crab 3142  Vcvv 3494  cop 4566  cfv 6349  (class class class)co 7150  cmpo 7152  0cc0 10531  1c1 10532  [,]cicc 12735  ndxcnx 16474   sSet csts 16475  Basecbs 16477   ·𝑠 cvsca 16563  -gcsg 18099  Itvcitv 26216  LineGclng 26217  toTGcttg 26653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-dec 12093  df-ndx 16480  df-slot 16481  df-sets 16484  df-itv 26218  df-lng 26219  df-ttg 26654
This theorem is referenced by:  ttgelitv  26663
  Copyright terms: Public domain W3C validator