![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ttgitvval | Structured version Visualization version GIF version |
Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) |
Ref | Expression |
---|---|
ttgval.n | ⊢ 𝐺 = (toTG‘𝐻) |
ttgitvval.i | ⊢ 𝐼 = (Itv‘𝐺) |
ttgitvval.b | ⊢ 𝑃 = (Base‘𝐻) |
ttgitvval.m | ⊢ − = (-g‘𝐻) |
ttgitvval.s | ⊢ · = ( ·𝑠 ‘𝐻) |
Ref | Expression |
---|---|
ttgitvval | ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋𝐼𝑌) = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ttgval.n | . . . . 5 ⊢ 𝐺 = (toTG‘𝐻) | |
2 | ttgitvval.b | . . . . 5 ⊢ 𝑃 = (Base‘𝐻) | |
3 | ttgitvval.m | . . . . 5 ⊢ − = (-g‘𝐻) | |
4 | ttgitvval.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐻) | |
5 | ttgitvval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | 1, 2, 3, 4, 5 | ttgval 25954 | . . . 4 ⊢ (𝐻 ∈ 𝑉 → (𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉) ∧ 𝐼 = (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}))) |
7 | 6 | simprd 482 | . . 3 ⊢ (𝐻 ∈ 𝑉 → 𝐼 = (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
8 | 7 | 3ad2ant1 1128 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝐼 = (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
9 | simprl 811 | . . . . . 6 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
10 | 9 | oveq2d 6829 | . . . . 5 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑧 − 𝑥) = (𝑧 − 𝑋)) |
11 | simprr 813 | . . . . . . 7 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
12 | 11, 9 | oveq12d 6831 | . . . . . 6 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑦 − 𝑥) = (𝑌 − 𝑋)) |
13 | 12 | oveq2d 6829 | . . . . 5 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑘 · (𝑦 − 𝑥)) = (𝑘 · (𝑌 − 𝑋))) |
14 | 10, 13 | eqeq12d 2775 | . . . 4 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ (𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
15 | 14 | rexbidv 3190 | . . 3 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
16 | 15 | rabbidv 3329 | . 2 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))} = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
17 | simp2 1132 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑋 ∈ 𝑃) | |
18 | simp3 1133 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑌 ∈ 𝑃) | |
19 | fvex 6362 | . . . . 5 ⊢ (Base‘𝐻) ∈ V | |
20 | 2, 19 | eqeltri 2835 | . . . 4 ⊢ 𝑃 ∈ V |
21 | 20 | rabex 4964 | . . 3 ⊢ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))} ∈ V |
22 | 21 | a1i 11 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))} ∈ V) |
23 | 8, 16, 17, 18, 22 | ovmpt2d 6953 | 1 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋𝐼𝑌) = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∨ w3o 1071 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 {crab 3054 Vcvv 3340 〈cop 4327 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 0cc0 10128 1c1 10129 [,]cicc 12371 ndxcnx 16056 sSet csts 16057 Basecbs 16059 ·𝑠 cvsca 16147 -gcsg 17625 Itvcitv 25534 LineGclng 25535 toTGcttg 25952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-dec 11686 df-ndx 16062 df-slot 16063 df-sets 16066 df-itv 25536 df-lng 25537 df-ttg 25953 |
This theorem is referenced by: ttgelitv 25962 |
Copyright terms: Public domain | W3C validator |