Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttglem Structured version   Visualization version   GIF version

Theorem ttglem 25663
 Description: Lemma for ttgbas 25664 and ttgvsca 25667. (Contributed by Thierry Arnoux, 15-Apr-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttglem.2 𝐸 = Slot 𝑁
ttglem.3 𝑁 ∈ ℕ
ttglem.4 𝑁 < 16
Assertion
Ref Expression
ttglem (𝐸𝐻) = (𝐸𝐺)

Proof of Theorem ttglem
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttgval.n . . . . . 6 𝐺 = (toTG‘𝐻)
2 eqid 2621 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2621 . . . . . 6 (-g𝐻) = (-g𝐻)
4 eqid 2621 . . . . . 6 ( ·𝑠𝐻) = ( ·𝑠𝐻)
5 eqid 2621 . . . . . 6 (Itv‘𝐺) = (Itv‘𝐺)
61, 2, 3, 4, 5ttgval 25662 . . . . 5 (𝐻 ∈ V → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩) ∧ (Itv‘𝐺) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})))
76simpld 475 . . . 4 (𝐻 ∈ V → 𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
87fveq2d 6154 . . 3 (𝐻 ∈ V → (𝐸𝐺) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩)))
9 ttglem.2 . . . . . 6 𝐸 = Slot 𝑁
10 ttglem.3 . . . . . 6 𝑁 ∈ ℕ
119, 10ndxid 15808 . . . . 5 𝐸 = Slot (𝐸‘ndx)
1210nnrei 10976 . . . . . . 7 𝑁 ∈ ℝ
13 ttglem.4 . . . . . . 7 𝑁 < 16
1412, 13ltneii 10097 . . . . . 6 𝑁16
159, 10ndxarg 15807 . . . . . . 7 (𝐸‘ndx) = 𝑁
16 itvndx 25246 . . . . . . 7 (Itv‘ndx) = 16
1715, 16neeq12i 2856 . . . . . 6 ((𝐸‘ndx) ≠ (Itv‘ndx) ↔ 𝑁16)
1814, 17mpbir 221 . . . . 5 (𝐸‘ndx) ≠ (Itv‘ndx)
1911, 18setsnid 15839 . . . 4 (𝐸𝐻) = (𝐸‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩))
20 1nn0 11255 . . . . . . . . 9 1 ∈ ℕ0
21 6nn0 11260 . . . . . . . . 9 6 ∈ ℕ0
22 7nn 11137 . . . . . . . . 9 7 ∈ ℕ
23 6lt7 11156 . . . . . . . . 9 6 < 7
2420, 21, 22, 23declt 11477 . . . . . . . 8 16 < 17
25 6nn 11136 . . . . . . . . . . 11 6 ∈ ℕ
2620, 25decnncl 11465 . . . . . . . . . 10 16 ∈ ℕ
2726nnrei 10976 . . . . . . . . 9 16 ∈ ℝ
2820, 22decnncl 11465 . . . . . . . . . 10 17 ∈ ℕ
2928nnrei 10976 . . . . . . . . 9 17 ∈ ℝ
3012, 27, 29lttri 10110 . . . . . . . 8 ((𝑁 < 16 ∧ 16 < 17) → 𝑁 < 17)
3113, 24, 30mp2an 707 . . . . . . 7 𝑁 < 17
3212, 31ltneii 10097 . . . . . 6 𝑁17
33 lngndx 25247 . . . . . . 7 (LineG‘ndx) = 17
3415, 33neeq12i 2856 . . . . . 6 ((𝐸‘ndx) ≠ (LineG‘ndx) ↔ 𝑁17)
3532, 34mpbir 221 . . . . 5 (𝐸‘ndx) ≠ (LineG‘ndx)
3611, 35setsnid 15839 . . . 4 (𝐸‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩)) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
3719, 36eqtri 2643 . . 3 (𝐸𝐻) = (𝐸‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝐻)𝑥) = (𝑘( ·𝑠𝐻)(𝑦(-g𝐻)𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ {𝑧 ∈ (Base‘𝐻) ∣ (𝑧 ∈ (𝑥(Itv‘𝐺)𝑦) ∨ 𝑥 ∈ (𝑧(Itv‘𝐺)𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘𝐺)𝑧))})⟩))
388, 37syl6reqr 2674 . 2 (𝐻 ∈ V → (𝐸𝐻) = (𝐸𝐺))
399str0 15835 . . 3 ∅ = (𝐸‘∅)
40 fvprc 6144 . . 3 𝐻 ∈ V → (𝐸𝐻) = ∅)
41 fvprc 6144 . . . . 5 𝐻 ∈ V → (toTG‘𝐻) = ∅)
421, 41syl5eq 2667 . . . 4 𝐻 ∈ V → 𝐺 = ∅)
4342fveq2d 6154 . . 3 𝐻 ∈ V → (𝐸𝐺) = (𝐸‘∅))
4439, 40, 433eqtr4a 2681 . 2 𝐻 ∈ V → (𝐸𝐻) = (𝐸𝐺))
4538, 44pm2.61i 176 1 (𝐸𝐻) = (𝐸𝐺)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∨ w3o 1035   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∃wrex 2908  {crab 2911  Vcvv 3186  ∅c0 3893  ⟨cop 4156   class class class wbr 4615  ‘cfv 5849  (class class class)co 6607   ↦ cmpt2 6609  0cc0 9883  1c1 9884   < clt 10021  ℕcn 10967  6c6 11021  7c7 11022  ;cdc 11440  [,]cicc 12123  ndxcnx 15781   sSet csts 15782  Slot cslot 15783  Basecbs 15784   ·𝑠 cvsca 15869  -gcsg 17348  Itvcitv 25242  LineGclng 25243  toTGcttg 25660 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-dec 11441  df-ndx 15787  df-slot 15788  df-sets 15790  df-itv 25244  df-lng 25245  df-ttg 25661 This theorem is referenced by:  ttgbas  25664  ttgplusg  25665  ttgvsca  25667  ttgds  25668
 Copyright terms: Public domain W3C validator