MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem5 Structured version   Visualization version   GIF version

Theorem ttukeylem5 9937
Description: Lemma for ttukey 9942. The 𝐺 function forms a (transfinitely long) chain of inclusions. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem5 ((𝜑 ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝐶𝐷)) → (𝐺𝐶) ⊆ (𝐺𝐷))
Distinct variable groups:   𝑥,𝑧,𝐶   𝑥,𝐷   𝑥,𝐺,𝑧   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑧)

Proof of Theorem ttukeylem5
Dummy variables 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq2 3995 . . . . . 6 (𝑦 = 𝑎 → (𝐶𝑦𝐶𝑎))
2 fveq2 6672 . . . . . . 7 (𝑦 = 𝑎 → (𝐺𝑦) = (𝐺𝑎))
32sseq2d 4001 . . . . . 6 (𝑦 = 𝑎 → ((𝐺𝐶) ⊆ (𝐺𝑦) ↔ (𝐺𝐶) ⊆ (𝐺𝑎)))
41, 3imbi12d 347 . . . . 5 (𝑦 = 𝑎 → ((𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)) ↔ (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))))
54imbi2d 343 . . . 4 (𝑦 = 𝑎 → (((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))) ↔ ((𝜑𝐶 ∈ On) → (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)))))
6 sseq2 3995 . . . . . 6 (𝑦 = 𝐷 → (𝐶𝑦𝐶𝐷))
7 fveq2 6672 . . . . . . 7 (𝑦 = 𝐷 → (𝐺𝑦) = (𝐺𝐷))
87sseq2d 4001 . . . . . 6 (𝑦 = 𝐷 → ((𝐺𝐶) ⊆ (𝐺𝑦) ↔ (𝐺𝐶) ⊆ (𝐺𝐷)))
96, 8imbi12d 347 . . . . 5 (𝑦 = 𝐷 → ((𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)) ↔ (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷))))
109imbi2d 343 . . . 4 (𝑦 = 𝐷 → (((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))) ↔ ((𝜑𝐶 ∈ On) → (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷)))))
11 r19.21v 3177 . . . . 5 (∀𝑎𝑦 ((𝜑𝐶 ∈ On) → (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) ↔ ((𝜑𝐶 ∈ On) → ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))))
12 onsseleq 6234 . . . . . . . . . 10 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶𝑦 ↔ (𝐶𝑦𝐶 = 𝑦)))
1312ad4ant23 751 . . . . . . . . 9 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶𝑦 ↔ (𝐶𝑦𝐶 = 𝑦)))
14 sseq2 3995 . . . . . . . . . . . . 13 (if(𝑦 = ∅, 𝐵, (𝐺𝑦)) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))) → ((𝐺𝐶) ⊆ if(𝑦 = ∅, 𝐵, (𝐺𝑦)) ↔ (𝐺𝐶) ⊆ if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))))
15 sseq2 3995 . . . . . . . . . . . . 13 (((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))) → ((𝐺𝐶) ⊆ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ↔ (𝐺𝐶) ⊆ if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))))
16 ttukeylem.4 . . . . . . . . . . . . . . . . . 18 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
1716tfr1 8035 . . . . . . . . . . . . . . . . 17 𝐺 Fn On
18 simplr 767 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → 𝑦 ∈ On)
19 onss 7507 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On → 𝑦 ⊆ On)
2018, 19syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → 𝑦 ⊆ On)
21 simprr 771 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → 𝐶𝑦)
22 fnfvima 6997 . . . . . . . . . . . . . . . . 17 ((𝐺 Fn On ∧ 𝑦 ⊆ On ∧ 𝐶𝑦) → (𝐺𝐶) ∈ (𝐺𝑦))
2317, 20, 21, 22mp3an2i 1462 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ∈ (𝐺𝑦))
24 elssuni 4870 . . . . . . . . . . . . . . . 16 ((𝐺𝐶) ∈ (𝐺𝑦) → (𝐺𝐶) ⊆ (𝐺𝑦))
2523, 24syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ (𝐺𝑦))
26 n0i 4301 . . . . . . . . . . . . . . . 16 (𝐶𝑦 → ¬ 𝑦 = ∅)
27 iffalse 4478 . . . . . . . . . . . . . . . 16 𝑦 = ∅ → if(𝑦 = ∅, 𝐵, (𝐺𝑦)) = (𝐺𝑦))
2821, 26, 273syl 18 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → if(𝑦 = ∅, 𝐵, (𝐺𝑦)) = (𝐺𝑦))
2925, 28sseqtrrd 4010 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ if(𝑦 = ∅, 𝐵, (𝐺𝑦)))
3029adantr 483 . . . . . . . . . . . . 13 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ 𝑦 = 𝑦) → (𝐺𝐶) ⊆ if(𝑦 = ∅, 𝐵, (𝐺𝑦)))
3121adantr 483 . . . . . . . . . . . . . . . 16 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝐶𝑦)
32 elssuni 4870 . . . . . . . . . . . . . . . 16 (𝐶𝑦𝐶 𝑦)
3331, 32syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝐶 𝑦)
34 sseq2 3995 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (𝐶𝑎𝐶 𝑦))
35 fveq2 6672 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑦 → (𝐺𝑎) = (𝐺 𝑦))
3635sseq2d 4001 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → ((𝐺𝐶) ⊆ (𝐺𝑎) ↔ (𝐺𝐶) ⊆ (𝐺 𝑦)))
3734, 36imbi12d 347 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → ((𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ↔ (𝐶 𝑦 → (𝐺𝐶) ⊆ (𝐺 𝑦))))
38 simplrl 775 . . . . . . . . . . . . . . . 16 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)))
39 vuniex 7467 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4039sucid 6272 . . . . . . . . . . . . . . . . 17 𝑦 ∈ suc 𝑦
41 eloni 6203 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → Ord 𝑦)
42 orduniorsuc 7547 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑦 → (𝑦 = 𝑦𝑦 = suc 𝑦))
4318, 41, 423syl 18 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝑦 = 𝑦𝑦 = suc 𝑦))
4443orcanai 999 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝑦 = suc 𝑦)
4540, 44eleqtrrid 2922 . . . . . . . . . . . . . . . 16 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝑦𝑦)
4637, 38, 45rspcdva 3627 . . . . . . . . . . . . . . 15 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → (𝐶 𝑦 → (𝐺𝐶) ⊆ (𝐺 𝑦)))
4733, 46mpd 15 . . . . . . . . . . . . . 14 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → (𝐺𝐶) ⊆ (𝐺 𝑦))
48 ssun1 4150 . . . . . . . . . . . . . 14 (𝐺 𝑦) ⊆ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))
4947, 48sstrdi 3981 . . . . . . . . . . . . 13 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → (𝐺𝐶) ⊆ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
5014, 15, 30, 49ifbothda 4506 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
51 ttukeylem.1 . . . . . . . . . . . . . 14 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
52 ttukeylem.2 . . . . . . . . . . . . . 14 (𝜑𝐵𝐴)
53 ttukeylem.3 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
5451, 52, 53, 16ttukeylem3 9935 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ On) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
5554ad4ant13 749 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
5650, 55sseqtrrd 4010 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ (𝐺𝑦))
5756expr 459 . . . . . . . . . 10 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))
58 fveq2 6672 . . . . . . . . . . . 12 (𝐶 = 𝑦 → (𝐺𝐶) = (𝐺𝑦))
59 eqimss 4025 . . . . . . . . . . . 12 ((𝐺𝐶) = (𝐺𝑦) → (𝐺𝐶) ⊆ (𝐺𝑦))
6058, 59syl 17 . . . . . . . . . . 11 (𝐶 = 𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))
6160a1i 11 . . . . . . . . . 10 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶 = 𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))
6257, 61jaod 855 . . . . . . . . 9 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → ((𝐶𝑦𝐶 = 𝑦) → (𝐺𝐶) ⊆ (𝐺𝑦)))
6313, 62sylbid 242 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))
6463ex 415 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) → (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))))
6564expcom 416 . . . . . 6 (𝑦 ∈ On → ((𝜑𝐶 ∈ On) → (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))))
6665a2d 29 . . . . 5 (𝑦 ∈ On → (((𝜑𝐶 ∈ On) → ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → ((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))))
6711, 66syl5bi 244 . . . 4 (𝑦 ∈ On → (∀𝑎𝑦 ((𝜑𝐶 ∈ On) → (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → ((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))))
685, 10, 67tfis3 7574 . . 3 (𝐷 ∈ On → ((𝜑𝐶 ∈ On) → (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷))))
6968expdcom 417 . 2 (𝜑 → (𝐶 ∈ On → (𝐷 ∈ On → (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷)))))
70693imp2 1345 1 ((𝜑 ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝐶𝐷)) → (𝐺𝐶) ⊆ (𝐺𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  ifcif 4469  𝒫 cpw 4541  {csn 4569   cuni 4840  cmpt 5148  dom cdm 5557  ran crn 5558  cima 5560  Ord word 6192  Oncon0 6193  suc csuc 6195   Fn wfn 6352  1-1-ontowf1o 6356  cfv 6357  recscrecs 8009  Fincfn 8511  cardccrd 9366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-wrecs 7949  df-recs 8010
This theorem is referenced by:  ttukeylem6  9938  ttukeylem7  9939
  Copyright terms: Public domain W3C validator