MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx1cn Structured version   Visualization version   GIF version

Theorem tx1cn 21317
Description: Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
tx1cn ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))

Proof of Theorem tx1cn
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1stres 7138 . . 3 (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋
21a1i 11 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋)
3 toponss 20639 . . . . . . . . . 10 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑤𝑅) → 𝑤𝑋)
43adantlr 750 . . . . . . . . 9 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → 𝑤𝑋)
5 xpss1 5194 . . . . . . . . 9 (𝑤𝑋 → (𝑤 × 𝑌) ⊆ (𝑋 × 𝑌))
64, 5syl 17 . . . . . . . 8 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑤 × 𝑌) ⊆ (𝑋 × 𝑌))
76sseld 3587 . . . . . . 7 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑧 ∈ (𝑤 × 𝑌) → 𝑧 ∈ (𝑋 × 𝑌)))
87pm4.71rd 666 . . . . . 6 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑧 ∈ (𝑤 × 𝑌) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑤 × 𝑌))))
9 ffn 6004 . . . . . . . 8 ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 → (1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
10 elpreima 6294 . . . . . . . 8 ((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) → (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤)))
111, 9, 10mp2b 10 . . . . . . 7 (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤))
12 fvres 6165 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → ((1st ↾ (𝑋 × 𝑌))‘𝑧) = (1st𝑧))
1312eleq1d 2688 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) → (((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤 ↔ (1st𝑧) ∈ 𝑤))
14 1st2nd2 7153 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
15 xp2nd 7147 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → (2nd𝑧) ∈ 𝑌)
16 elxp6 7148 . . . . . . . . . . . 12 (𝑧 ∈ (𝑤 × 𝑌) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑤 ∧ (2nd𝑧) ∈ 𝑌)))
17 anass 680 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑤) ∧ (2nd𝑧) ∈ 𝑌) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑤 ∧ (2nd𝑧) ∈ 𝑌)))
18 an32 838 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑤) ∧ (2nd𝑧) ∈ 𝑌) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑌) ∧ (1st𝑧) ∈ 𝑤))
1916, 17, 183bitr2i 288 . . . . . . . . . . 11 (𝑧 ∈ (𝑤 × 𝑌) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑌) ∧ (1st𝑧) ∈ 𝑤))
2019baib 943 . . . . . . . . . 10 ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑌) → (𝑧 ∈ (𝑤 × 𝑌) ↔ (1st𝑧) ∈ 𝑤))
2114, 15, 20syl2anc 692 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) → (𝑧 ∈ (𝑤 × 𝑌) ↔ (1st𝑧) ∈ 𝑤))
2213, 21bitr4d 271 . . . . . . . 8 (𝑧 ∈ (𝑋 × 𝑌) → (((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤𝑧 ∈ (𝑤 × 𝑌)))
2322pm5.32i 668 . . . . . . 7 ((𝑧 ∈ (𝑋 × 𝑌) ∧ ((1st ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑤 × 𝑌)))
2411, 23bitri 264 . . . . . 6 (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑤 × 𝑌)))
258, 24syl6rbbr 279 . . . . 5 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑧 ∈ ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ 𝑧 ∈ (𝑤 × 𝑌)))
2625eqrdv 2624 . . . 4 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) = (𝑤 × 𝑌))
27 toponmax 20638 . . . . . 6 (𝑆 ∈ (TopOn‘𝑌) → 𝑌𝑆)
2827ad2antlr 762 . . . . 5 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → 𝑌𝑆)
29 txopn 21310 . . . . . 6 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑤𝑅𝑌𝑆)) → (𝑤 × 𝑌) ∈ (𝑅 ×t 𝑆))
3029anassrs 679 . . . . 5 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) ∧ 𝑌𝑆) → (𝑤 × 𝑌) ∈ (𝑅 ×t 𝑆))
3128, 30mpdan 701 . . . 4 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → (𝑤 × 𝑌) ∈ (𝑅 ×t 𝑆))
3226, 31eqeltrd 2704 . . 3 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑅) → ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))
3332ralrimiva 2965 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑤𝑅 ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))
34 txtopon 21299 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
35 simpl 473 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑅 ∈ (TopOn‘𝑋))
36 iscn 20944 . . 3 (((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑅 ∈ (TopOn‘𝑋)) → ((1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ↔ ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 ∧ ∀𝑤𝑅 ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))))
3734, 35, 36syl2anc 692 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ↔ ((1st ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑋 ∧ ∀𝑤𝑅 ((1st ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))))
382, 33, 37mpbir2and 956 1 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wral 2912  wss 3560  cop 4159   × cxp 5077  ccnv 5078  cres 5081  cima 5082   Fn wfn 5845  wf 5846  cfv 5850  (class class class)co 6605  1st c1st 7114  2nd c2nd 7115  TopOnctopon 20613   Cn ccn 20933   ×t ctx 21268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-1st 7116  df-2nd 7117  df-map 7805  df-topgen 16020  df-top 20616  df-bases 20617  df-topon 20618  df-cn 20936  df-tx 21270
This theorem is referenced by:  txcn  21334  txcmpb  21352  cnmpt1st  21376  sxbrsiga  30125  txsconnlem  30922  txsconn  30923  hausgraph  37257
  Copyright terms: Public domain W3C validator