MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcnmpt Structured version   Visualization version   GIF version

Theorem txcnmpt 21340
Description: A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
txcnmpt.1 𝑊 = 𝑈
txcnmpt.2 𝐻 = (𝑥𝑊 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
Assertion
Ref Expression
txcnmpt ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑊
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem txcnmpt
Dummy variables 𝑠 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcnmpt.1 . . . . . . 7 𝑊 = 𝑈
2 eqid 2621 . . . . . . 7 𝑅 = 𝑅
31, 2cnf 20963 . . . . . 6 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝐹:𝑊 𝑅)
43adantr 481 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐹:𝑊 𝑅)
54ffvelrnda 6317 . . . 4 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥𝑊) → (𝐹𝑥) ∈ 𝑅)
6 eqid 2621 . . . . . . 7 𝑆 = 𝑆
71, 6cnf 20963 . . . . . 6 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝐺:𝑊 𝑆)
87adantl 482 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐺:𝑊 𝑆)
98ffvelrnda 6317 . . . 4 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥𝑊) → (𝐺𝑥) ∈ 𝑆)
10 opelxpi 5110 . . . 4 (((𝐹𝑥) ∈ 𝑅 ∧ (𝐺𝑥) ∈ 𝑆) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑅 × 𝑆))
115, 9, 10syl2anc 692 . . 3 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥𝑊) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑅 × 𝑆))
12 txcnmpt.2 . . 3 𝐻 = (𝑥𝑊 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
1311, 12fmptd 6343 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻:𝑊⟶( 𝑅 × 𝑆))
1412mptpreima 5589 . . . . . 6 (𝐻 “ (𝑟 × 𝑠)) = {𝑥𝑊 ∣ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)}
154adantr 481 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → 𝐹:𝑊 𝑅)
1615adantr 481 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → 𝐹:𝑊 𝑅)
17 ffn 6004 . . . . . . . . . . . 12 (𝐹:𝑊 𝑅𝐹 Fn 𝑊)
18 elpreima 6295 . . . . . . . . . . . 12 (𝐹 Fn 𝑊 → (𝑥 ∈ (𝐹𝑟) ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
1916, 17, 183syl 18 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐹𝑟) ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
20 ibar 525 . . . . . . . . . . . 12 (𝑥𝑊 → ((𝐹𝑥) ∈ 𝑟 ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
2120adantl 482 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → ((𝐹𝑥) ∈ 𝑟 ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
2219, 21bitr4d 271 . . . . . . . . . 10 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐹𝑟) ↔ (𝐹𝑥) ∈ 𝑟))
238ad2antrr 761 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → 𝐺:𝑊 𝑆)
24 ffn 6004 . . . . . . . . . . . 12 (𝐺:𝑊 𝑆𝐺 Fn 𝑊)
25 elpreima 6295 . . . . . . . . . . . 12 (𝐺 Fn 𝑊 → (𝑥 ∈ (𝐺𝑠) ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
2623, 24, 253syl 18 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐺𝑠) ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
27 ibar 525 . . . . . . . . . . . 12 (𝑥𝑊 → ((𝐺𝑥) ∈ 𝑠 ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
2827adantl 482 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → ((𝐺𝑥) ∈ 𝑠 ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
2926, 28bitr4d 271 . . . . . . . . . 10 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐺𝑠) ↔ (𝐺𝑥) ∈ 𝑠))
3022, 29anbi12d 746 . . . . . . . . 9 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → ((𝑥 ∈ (𝐹𝑟) ∧ 𝑥 ∈ (𝐺𝑠)) ↔ ((𝐹𝑥) ∈ 𝑟 ∧ (𝐺𝑥) ∈ 𝑠)))
31 elin 3776 . . . . . . . . 9 (𝑥 ∈ ((𝐹𝑟) ∩ (𝐺𝑠)) ↔ (𝑥 ∈ (𝐹𝑟) ∧ 𝑥 ∈ (𝐺𝑠)))
32 opelxp 5108 . . . . . . . . 9 (⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠) ↔ ((𝐹𝑥) ∈ 𝑟 ∧ (𝐺𝑥) ∈ 𝑠))
3330, 31, 323bitr4g 303 . . . . . . . 8 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ ((𝐹𝑟) ∩ (𝐺𝑠)) ↔ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)))
3433rabbi2dva 3801 . . . . . . 7 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝑊 ∩ ((𝐹𝑟) ∩ (𝐺𝑠))) = {𝑥𝑊 ∣ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)})
35 inss1 3813 . . . . . . . . . 10 ((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ (𝐹𝑟)
36 cnvimass 5446 . . . . . . . . . 10 (𝐹𝑟) ⊆ dom 𝐹
3735, 36sstri 3593 . . . . . . . . 9 ((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ dom 𝐹
38 fdm 6010 . . . . . . . . . 10 (𝐹:𝑊 𝑅 → dom 𝐹 = 𝑊)
3915, 38syl 17 . . . . . . . . 9 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → dom 𝐹 = 𝑊)
4037, 39syl5sseq 3634 . . . . . . . 8 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → ((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ 𝑊)
41 sseqin2 3797 . . . . . . . 8 (((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ 𝑊 ↔ (𝑊 ∩ ((𝐹𝑟) ∩ (𝐺𝑠))) = ((𝐹𝑟) ∩ (𝐺𝑠)))
4240, 41sylib 208 . . . . . . 7 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝑊 ∩ ((𝐹𝑟) ∩ (𝐺𝑠))) = ((𝐹𝑟) ∩ (𝐺𝑠)))
4334, 42eqtr3d 2657 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → {𝑥𝑊 ∣ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)} = ((𝐹𝑟) ∩ (𝐺𝑠)))
4414, 43syl5eq 2667 . . . . 5 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐻 “ (𝑟 × 𝑠)) = ((𝐹𝑟) ∩ (𝐺𝑠)))
45 cntop1 20957 . . . . . . . 8 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑈 ∈ Top)
4645adantl 482 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑈 ∈ Top)
4746adantr 481 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → 𝑈 ∈ Top)
48 cnima 20982 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝑟𝑅) → (𝐹𝑟) ∈ 𝑈)
4948ad2ant2r 782 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐹𝑟) ∈ 𝑈)
50 cnima 20982 . . . . . . 7 ((𝐺 ∈ (𝑈 Cn 𝑆) ∧ 𝑠𝑆) → (𝐺𝑠) ∈ 𝑈)
5150ad2ant2l 781 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐺𝑠) ∈ 𝑈)
52 inopn 20626 . . . . . 6 ((𝑈 ∈ Top ∧ (𝐹𝑟) ∈ 𝑈 ∧ (𝐺𝑠) ∈ 𝑈) → ((𝐹𝑟) ∩ (𝐺𝑠)) ∈ 𝑈)
5347, 49, 51, 52syl3anc 1323 . . . . 5 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → ((𝐹𝑟) ∩ (𝐺𝑠)) ∈ 𝑈)
5444, 53eqeltrd 2698 . . . 4 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)
5554ralrimivva 2965 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀𝑟𝑅𝑠𝑆 (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)
56 vex 3189 . . . . . 6 𝑟 ∈ V
57 vex 3189 . . . . . 6 𝑠 ∈ V
5856, 57xpex 6918 . . . . 5 (𝑟 × 𝑠) ∈ V
5958rgen2w 2920 . . . 4 𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V
60 eqid 2621 . . . . 5 (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
61 imaeq2 5423 . . . . . 6 (𝑧 = (𝑟 × 𝑠) → (𝐻𝑧) = (𝐻 “ (𝑟 × 𝑠)))
6261eleq1d 2683 . . . . 5 (𝑧 = (𝑟 × 𝑠) → ((𝐻𝑧) ∈ 𝑈 ↔ (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈))
6360, 62ralrnmpt2 6731 . . . 4 (∀𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V → (∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈 ↔ ∀𝑟𝑅𝑠𝑆 (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈))
6459, 63ax-mp 5 . . 3 (∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈 ↔ ∀𝑟𝑅𝑠𝑆 (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)
6555, 64sylibr 224 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈)
661toptopon 20647 . . . 4 (𝑈 ∈ Top ↔ 𝑈 ∈ (TopOn‘𝑊))
6746, 66sylib 208 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑈 ∈ (TopOn‘𝑊))
68 cntop2 20958 . . . 4 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ Top)
69 cntop2 20958 . . . 4 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ Top)
70 eqid 2621 . . . . 5 ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
7170txval 21280 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
7268, 69, 71syl2an 494 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
732toptopon 20647 . . . . 5 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
7468, 73sylib 208 . . . 4 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ (TopOn‘ 𝑅))
756toptopon 20647 . . . . 5 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘ 𝑆))
7669, 75sylib 208 . . . 4 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ (TopOn‘ 𝑆))
77 txtopon 21307 . . . 4 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
7874, 76, 77syl2an 494 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
7967, 72, 78tgcn 20969 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ (𝐻:𝑊⟶( 𝑅 × 𝑆) ∧ ∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈)))
8013, 65, 79mpbir2and 956 1 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  {crab 2911  Vcvv 3186  cin 3555  wss 3556  cop 4156   cuni 4404  cmpt 4675   × cxp 5074  ccnv 5075  dom cdm 5076  ran crn 5077  cima 5079   Fn wfn 5844  wf 5845  cfv 5849  (class class class)co 6607  cmpt2 6609  topGenctg 16022  Topctop 20620  TopOnctopon 20637   Cn ccn 20941   ×t ctx 21276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-fv 5857  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-1st 7116  df-2nd 7117  df-map 7807  df-topgen 16028  df-top 20621  df-topon 20638  df-bases 20664  df-cn 20944  df-tx 21278
This theorem is referenced by:  uptx  21341  hauseqlcld  21362  txkgen  21368  cnmpt1t  21381  cnmpt2t  21389  txpconn  30943
  Copyright terms: Public domain W3C validator