MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txdis Structured version   Visualization version   GIF version

Theorem txdis 22232
Description: The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
txdis ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵))

Proof of Theorem txdis
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 21595 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
2 distop 21595 . . . . 5 (𝐵𝑊 → 𝒫 𝐵 ∈ Top)
3 unipw 5333 . . . . . . 7 𝒫 𝐴 = 𝐴
43eqcomi 2828 . . . . . 6 𝐴 = 𝒫 𝐴
5 unipw 5333 . . . . . . 7 𝒫 𝐵 = 𝐵
65eqcomi 2828 . . . . . 6 𝐵 = 𝒫 𝐵
74, 6txuni 22192 . . . . 5 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐵 ∈ Top) → (𝐴 × 𝐵) = (𝒫 𝐴 ×t 𝒫 𝐵))
81, 2, 7syl2an 597 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) = (𝒫 𝐴 ×t 𝒫 𝐵))
9 eqimss2 4022 . . . 4 ((𝐴 × 𝐵) = (𝒫 𝐴 ×t 𝒫 𝐵) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵))
108, 9syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵))
11 sspwuni 5013 . . 3 ((𝒫 𝐴 ×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵) ↔ (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵))
1210, 11sylibr 236 . 2 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵))
13 elelpwi 4552 . . . . . . . . 9 ((𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵)) → 𝑦 ∈ (𝐴 × 𝐵))
1413adantl 484 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ (𝐴 × 𝐵))
15 xp1st 7713 . . . . . . . 8 (𝑦 ∈ (𝐴 × 𝐵) → (1st𝑦) ∈ 𝐴)
16 snelpwi 5327 . . . . . . . 8 ((1st𝑦) ∈ 𝐴 → {(1st𝑦)} ∈ 𝒫 𝐴)
1714, 15, 163syl 18 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(1st𝑦)} ∈ 𝒫 𝐴)
18 xp2nd 7714 . . . . . . . 8 (𝑦 ∈ (𝐴 × 𝐵) → (2nd𝑦) ∈ 𝐵)
19 snelpwi 5327 . . . . . . . 8 ((2nd𝑦) ∈ 𝐵 → {(2nd𝑦)} ∈ 𝒫 𝐵)
2014, 18, 193syl 18 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(2nd𝑦)} ∈ 𝒫 𝐵)
21 vsnid 4594 . . . . . . . 8 𝑦 ∈ {𝑦}
22 1st2nd2 7720 . . . . . . . . . 10 (𝑦 ∈ (𝐴 × 𝐵) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2314, 22syl 17 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2423sneqd 4571 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {𝑦} = {⟨(1st𝑦), (2nd𝑦)⟩})
2521, 24eleqtrid 2917 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩})
26 simprl 769 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦𝑥)
2723, 26eqeltrrd 2912 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑥)
2827snssd 4734 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥)
29 xpeq1 5562 . . . . . . . . . 10 (𝑧 = {(1st𝑦)} → (𝑧 × 𝑤) = ({(1st𝑦)} × 𝑤))
3029eleq2d 2896 . . . . . . . . 9 (𝑧 = {(1st𝑦)} → (𝑦 ∈ (𝑧 × 𝑤) ↔ 𝑦 ∈ ({(1st𝑦)} × 𝑤)))
3129sseq1d 3996 . . . . . . . . 9 (𝑧 = {(1st𝑦)} → ((𝑧 × 𝑤) ⊆ 𝑥 ↔ ({(1st𝑦)} × 𝑤) ⊆ 𝑥))
3230, 31anbi12d 632 . . . . . . . 8 (𝑧 = {(1st𝑦)} → ((𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ ({(1st𝑦)} × 𝑤) ∧ ({(1st𝑦)} × 𝑤) ⊆ 𝑥)))
33 xpeq2 5569 . . . . . . . . . . 11 (𝑤 = {(2nd𝑦)} → ({(1st𝑦)} × 𝑤) = ({(1st𝑦)} × {(2nd𝑦)}))
34 fvex 6676 . . . . . . . . . . . 12 (1st𝑦) ∈ V
35 fvex 6676 . . . . . . . . . . . 12 (2nd𝑦) ∈ V
3634, 35xpsn 6896 . . . . . . . . . . 11 ({(1st𝑦)} × {(2nd𝑦)}) = {⟨(1st𝑦), (2nd𝑦)⟩}
3733, 36syl6eq 2870 . . . . . . . . . 10 (𝑤 = {(2nd𝑦)} → ({(1st𝑦)} × 𝑤) = {⟨(1st𝑦), (2nd𝑦)⟩})
3837eleq2d 2896 . . . . . . . . 9 (𝑤 = {(2nd𝑦)} → (𝑦 ∈ ({(1st𝑦)} × 𝑤) ↔ 𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩}))
3937sseq1d 3996 . . . . . . . . 9 (𝑤 = {(2nd𝑦)} → (({(1st𝑦)} × 𝑤) ⊆ 𝑥 ↔ {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥))
4038, 39anbi12d 632 . . . . . . . 8 (𝑤 = {(2nd𝑦)} → ((𝑦 ∈ ({(1st𝑦)} × 𝑤) ∧ ({(1st𝑦)} × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩} ∧ {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥)))
4132, 40rspc2ev 3633 . . . . . . 7 (({(1st𝑦)} ∈ 𝒫 𝐴 ∧ {(2nd𝑦)} ∈ 𝒫 𝐵 ∧ (𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩} ∧ {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥)) → ∃𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))
4217, 20, 25, 28, 41syl112anc 1369 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → ∃𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))
4342expr 459 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝑦𝑥) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∃𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
4443ralrimdva 3187 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∀𝑦𝑥𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
45 eltx 22168 . . . . 5 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐵 ∈ Top) → (𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵) ↔ ∀𝑦𝑥𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
461, 2, 45syl2an 597 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵) ↔ ∀𝑦𝑥𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
4744, 46sylibrd 261 . . 3 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → 𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵)))
4847ssrdv 3971 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ⊆ (𝒫 𝐴 ×t 𝒫 𝐵))
4912, 48eqssd 3982 1 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wral 3136  wrex 3137  wss 3934  𝒫 cpw 4537  {csn 4559  cop 4565   cuni 4830   × cxp 5546  cfv 6348  (class class class)co 7148  1st c1st 7679  2nd c2nd 7680  Topctop 21493   ×t ctx 22160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-topgen 16709  df-top 21494  df-topon 21511  df-bases 21546  df-tx 22162
This theorem is referenced by:  distgp  22699
  Copyright terms: Public domain W3C validator