MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txindis Structured version   Visualization version   GIF version

Theorem txindis 21342
Description: The topological product of indiscrete spaces is indiscrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
txindis ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (𝐴 × 𝐵)}

Proof of Theorem txindis
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neq0 3911 . . . . . . 7 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
2 indistop 20711 . . . . . . . . . . 11 {∅, 𝐴} ∈ Top
3 indistop 20711 . . . . . . . . . . 11 {∅, 𝐵} ∈ Top
4 eltx 21276 . . . . . . . . . . 11 (({∅, 𝐴} ∈ Top ∧ {∅, 𝐵} ∈ Top) → (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ↔ ∀𝑦𝑥𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
52, 3, 4mp2an 707 . . . . . . . . . 10 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ↔ ∀𝑦𝑥𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))
6 rsp 2929 . . . . . . . . . 10 (∀𝑦𝑥𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) → (𝑦𝑥 → ∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
75, 6sylbi 207 . . . . . . . . 9 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (𝑦𝑥 → ∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
8 elssuni 4438 . . . . . . . . . . . . . 14 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → 𝑥 ({∅, 𝐴} ×t {∅, 𝐵}))
9 indisuni 20712 . . . . . . . . . . . . . . 15 ( I ‘𝐴) = {∅, 𝐴}
10 indisuni 20712 . . . . . . . . . . . . . . 15 ( I ‘𝐵) = {∅, 𝐵}
112, 3, 9, 10txunii 21301 . . . . . . . . . . . . . 14 (( I ‘𝐴) × ( I ‘𝐵)) = ({∅, 𝐴} ×t {∅, 𝐵})
128, 11syl6sseqr 3636 . . . . . . . . . . . . 13 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → 𝑥 ⊆ (( I ‘𝐴) × ( I ‘𝐵)))
1312ad2antrr 761 . . . . . . . . . . . 12 (((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑥 ⊆ (( I ‘𝐴) × ( I ‘𝐵)))
14 ne0i 3902 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑧 × 𝑤) → (𝑧 × 𝑤) ≠ ∅)
1514ad2antrl 763 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 × 𝑤) ≠ ∅)
16 xpnz 5516 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅) ↔ (𝑧 × 𝑤) ≠ ∅)
1715, 16sylibr 224 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅))
1817simpld 475 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 ≠ ∅)
1918neneqd 2801 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → ¬ 𝑧 = ∅)
20 simpll 789 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 ∈ {∅, 𝐴})
21 indislem 20709 . . . . . . . . . . . . . . . . . . 19 {∅, ( I ‘𝐴)} = {∅, 𝐴}
2220, 21syl6eleqr 2715 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 ∈ {∅, ( I ‘𝐴)})
23 elpri 4173 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {∅, ( I ‘𝐴)} → (𝑧 = ∅ ∨ 𝑧 = ( I ‘𝐴)))
2422, 23syl 17 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 = ∅ ∨ 𝑧 = ( I ‘𝐴)))
2524ord 392 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (¬ 𝑧 = ∅ → 𝑧 = ( I ‘𝐴)))
2619, 25mpd 15 . . . . . . . . . . . . . . 15 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 = ( I ‘𝐴))
2717simprd 479 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 ≠ ∅)
2827neneqd 2801 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → ¬ 𝑤 = ∅)
29 simplr 791 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 ∈ {∅, 𝐵})
30 indislem 20709 . . . . . . . . . . . . . . . . . . 19 {∅, ( I ‘𝐵)} = {∅, 𝐵}
3129, 30syl6eleqr 2715 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 ∈ {∅, ( I ‘𝐵)})
32 elpri 4173 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {∅, ( I ‘𝐵)} → (𝑤 = ∅ ∨ 𝑤 = ( I ‘𝐵)))
3331, 32syl 17 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑤 = ∅ ∨ 𝑤 = ( I ‘𝐵)))
3433ord 392 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (¬ 𝑤 = ∅ → 𝑤 = ( I ‘𝐵)))
3528, 34mpd 15 . . . . . . . . . . . . . . 15 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 = ( I ‘𝐵))
3626, 35xpeq12d 5105 . . . . . . . . . . . . . 14 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 × 𝑤) = (( I ‘𝐴) × ( I ‘𝐵)))
37 simprr 795 . . . . . . . . . . . . . 14 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 × 𝑤) ⊆ 𝑥)
3836, 37eqsstr3d 3624 . . . . . . . . . . . . 13 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (( I ‘𝐴) × ( I ‘𝐵)) ⊆ 𝑥)
3938adantll 749 . . . . . . . . . . . 12 (((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (( I ‘𝐴) × ( I ‘𝐵)) ⊆ 𝑥)
4013, 39eqssd 3605 . . . . . . . . . . 11 (((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵)))
4140ex 450 . . . . . . . . . 10 ((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) → ((𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4241rexlimdvva 3036 . . . . . . . . 9 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
437, 42syld 47 . . . . . . . 8 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (𝑦𝑥𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4443exlimdv 1863 . . . . . . 7 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (∃𝑦 𝑦𝑥𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
451, 44syl5bi 232 . . . . . 6 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (¬ 𝑥 = ∅ → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4645orrd 393 . . . . 5 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (𝑥 = ∅ ∨ 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
47 vex 3194 . . . . . 6 𝑥 ∈ V
4847elpr 4174 . . . . 5 (𝑥 ∈ {∅, (( I ‘𝐴) × ( I ‘𝐵))} ↔ (𝑥 = ∅ ∨ 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4946, 48sylibr 224 . . . 4 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → 𝑥 ∈ {∅, (( I ‘𝐴) × ( I ‘𝐵))})
5049ssriv 3592 . . 3 ({∅, 𝐴} ×t {∅, 𝐵}) ⊆ {∅, (( I ‘𝐴) × ( I ‘𝐵))}
519toptopon 20643 . . . . . . 7 ({∅, 𝐴} ∈ Top ↔ {∅, 𝐴} ∈ (TopOn‘( I ‘𝐴)))
522, 51mpbi 220 . . . . . 6 {∅, 𝐴} ∈ (TopOn‘( I ‘𝐴))
5310toptopon 20643 . . . . . . 7 ({∅, 𝐵} ∈ Top ↔ {∅, 𝐵} ∈ (TopOn‘( I ‘𝐵)))
543, 53mpbi 220 . . . . . 6 {∅, 𝐵} ∈ (TopOn‘( I ‘𝐵))
55 txtopon 21299 . . . . . 6 (({∅, 𝐴} ∈ (TopOn‘( I ‘𝐴)) ∧ {∅, 𝐵} ∈ (TopOn‘( I ‘𝐵))) → ({∅, 𝐴} ×t {∅, 𝐵}) ∈ (TopOn‘(( I ‘𝐴) × ( I ‘𝐵))))
5652, 54, 55mp2an 707 . . . . 5 ({∅, 𝐴} ×t {∅, 𝐵}) ∈ (TopOn‘(( I ‘𝐴) × ( I ‘𝐵)))
57 topgele 20644 . . . . 5 (({∅, 𝐴} ×t {∅, 𝐵}) ∈ (TopOn‘(( I ‘𝐴) × ( I ‘𝐵))) → ({∅, (( I ‘𝐴) × ( I ‘𝐵))} ⊆ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ ({∅, 𝐴} ×t {∅, 𝐵}) ⊆ 𝒫 (( I ‘𝐴) × ( I ‘𝐵))))
5856, 57ax-mp 5 . . . 4 ({∅, (( I ‘𝐴) × ( I ‘𝐵))} ⊆ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ ({∅, 𝐴} ×t {∅, 𝐵}) ⊆ 𝒫 (( I ‘𝐴) × ( I ‘𝐵)))
5958simpli 474 . . 3 {∅, (( I ‘𝐴) × ( I ‘𝐵))} ⊆ ({∅, 𝐴} ×t {∅, 𝐵})
6050, 59eqssi 3604 . 2 ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (( I ‘𝐴) × ( I ‘𝐵))}
61 txindislem 21341 . . 3 (( I ‘𝐴) × ( I ‘𝐵)) = ( I ‘(𝐴 × 𝐵))
6261preq2i 4247 . 2 {∅, (( I ‘𝐴) × ( I ‘𝐵))} = {∅, ( I ‘(𝐴 × 𝐵))}
63 indislem 20709 . 2 {∅, ( I ‘(𝐴 × 𝐵))} = {∅, (𝐴 × 𝐵)}
6460, 62, 633eqtri 2652 1 ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (𝐴 × 𝐵)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wex 1701  wcel 1992  wne 2796  wral 2912  wrex 2913  wss 3560  c0 3896  𝒫 cpw 4135  {cpr 4155   cuni 4407   I cid 4989   × cxp 5077  cfv 5850  (class class class)co 6605  Topctop 20612  TopOnctopon 20613   ×t ctx 21268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-1st 7116  df-2nd 7117  df-topgen 16020  df-top 20616  df-bases 20617  df-topon 20618  df-tx 21270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator