MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txindis Structured version   Visualization version   GIF version

Theorem txindis 21485
Description: The topological product of indiscrete spaces is indiscrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
txindis ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (𝐴 × 𝐵)}

Proof of Theorem txindis
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neq0 3963 . . . . . . 7 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
2 indistop 20854 . . . . . . . . . . 11 {∅, 𝐴} ∈ Top
3 indistop 20854 . . . . . . . . . . 11 {∅, 𝐵} ∈ Top
4 eltx 21419 . . . . . . . . . . 11 (({∅, 𝐴} ∈ Top ∧ {∅, 𝐵} ∈ Top) → (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ↔ ∀𝑦𝑥𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
52, 3, 4mp2an 708 . . . . . . . . . 10 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ↔ ∀𝑦𝑥𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))
6 rsp 2958 . . . . . . . . . 10 (∀𝑦𝑥𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) → (𝑦𝑥 → ∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
75, 6sylbi 207 . . . . . . . . 9 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (𝑦𝑥 → ∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
8 elssuni 4499 . . . . . . . . . . . . . 14 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → 𝑥 ({∅, 𝐴} ×t {∅, 𝐵}))
9 indisuni 20855 . . . . . . . . . . . . . . 15 ( I ‘𝐴) = {∅, 𝐴}
10 indisuni 20855 . . . . . . . . . . . . . . 15 ( I ‘𝐵) = {∅, 𝐵}
112, 3, 9, 10txunii 21444 . . . . . . . . . . . . . 14 (( I ‘𝐴) × ( I ‘𝐵)) = ({∅, 𝐴} ×t {∅, 𝐵})
128, 11syl6sseqr 3685 . . . . . . . . . . . . 13 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → 𝑥 ⊆ (( I ‘𝐴) × ( I ‘𝐵)))
1312ad2antrr 762 . . . . . . . . . . . 12 (((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑥 ⊆ (( I ‘𝐴) × ( I ‘𝐵)))
14 ne0i 3954 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑧 × 𝑤) → (𝑧 × 𝑤) ≠ ∅)
1514ad2antrl 764 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 × 𝑤) ≠ ∅)
16 xpnz 5588 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅) ↔ (𝑧 × 𝑤) ≠ ∅)
1715, 16sylibr 224 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅))
1817simpld 474 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 ≠ ∅)
1918neneqd 2828 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → ¬ 𝑧 = ∅)
20 simpll 805 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 ∈ {∅, 𝐴})
21 indislem 20852 . . . . . . . . . . . . . . . . . . 19 {∅, ( I ‘𝐴)} = {∅, 𝐴}
2220, 21syl6eleqr 2741 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 ∈ {∅, ( I ‘𝐴)})
23 elpri 4230 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {∅, ( I ‘𝐴)} → (𝑧 = ∅ ∨ 𝑧 = ( I ‘𝐴)))
2422, 23syl 17 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 = ∅ ∨ 𝑧 = ( I ‘𝐴)))
2524ord 391 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (¬ 𝑧 = ∅ → 𝑧 = ( I ‘𝐴)))
2619, 25mpd 15 . . . . . . . . . . . . . . 15 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 = ( I ‘𝐴))
2717simprd 478 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 ≠ ∅)
2827neneqd 2828 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → ¬ 𝑤 = ∅)
29 simplr 807 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 ∈ {∅, 𝐵})
30 indislem 20852 . . . . . . . . . . . . . . . . . . 19 {∅, ( I ‘𝐵)} = {∅, 𝐵}
3129, 30syl6eleqr 2741 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 ∈ {∅, ( I ‘𝐵)})
32 elpri 4230 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {∅, ( I ‘𝐵)} → (𝑤 = ∅ ∨ 𝑤 = ( I ‘𝐵)))
3331, 32syl 17 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑤 = ∅ ∨ 𝑤 = ( I ‘𝐵)))
3433ord 391 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (¬ 𝑤 = ∅ → 𝑤 = ( I ‘𝐵)))
3528, 34mpd 15 . . . . . . . . . . . . . . 15 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 = ( I ‘𝐵))
3626, 35xpeq12d 5174 . . . . . . . . . . . . . 14 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 × 𝑤) = (( I ‘𝐴) × ( I ‘𝐵)))
37 simprr 811 . . . . . . . . . . . . . 14 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 × 𝑤) ⊆ 𝑥)
3836, 37eqsstr3d 3673 . . . . . . . . . . . . 13 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (( I ‘𝐴) × ( I ‘𝐵)) ⊆ 𝑥)
3938adantll 750 . . . . . . . . . . . 12 (((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (( I ‘𝐴) × ( I ‘𝐵)) ⊆ 𝑥)
4013, 39eqssd 3653 . . . . . . . . . . 11 (((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵)))
4140ex 449 . . . . . . . . . 10 ((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) → ((𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4241rexlimdvva 3067 . . . . . . . . 9 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
437, 42syld 47 . . . . . . . 8 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (𝑦𝑥𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4443exlimdv 1901 . . . . . . 7 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (∃𝑦 𝑦𝑥𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
451, 44syl5bi 232 . . . . . 6 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (¬ 𝑥 = ∅ → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4645orrd 392 . . . . 5 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (𝑥 = ∅ ∨ 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
47 vex 3234 . . . . . 6 𝑥 ∈ V
4847elpr 4231 . . . . 5 (𝑥 ∈ {∅, (( I ‘𝐴) × ( I ‘𝐵))} ↔ (𝑥 = ∅ ∨ 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4946, 48sylibr 224 . . . 4 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → 𝑥 ∈ {∅, (( I ‘𝐴) × ( I ‘𝐵))})
5049ssriv 3640 . . 3 ({∅, 𝐴} ×t {∅, 𝐵}) ⊆ {∅, (( I ‘𝐴) × ( I ‘𝐵))}
519toptopon 20770 . . . . . . 7 ({∅, 𝐴} ∈ Top ↔ {∅, 𝐴} ∈ (TopOn‘( I ‘𝐴)))
522, 51mpbi 220 . . . . . 6 {∅, 𝐴} ∈ (TopOn‘( I ‘𝐴))
5310toptopon 20770 . . . . . . 7 ({∅, 𝐵} ∈ Top ↔ {∅, 𝐵} ∈ (TopOn‘( I ‘𝐵)))
543, 53mpbi 220 . . . . . 6 {∅, 𝐵} ∈ (TopOn‘( I ‘𝐵))
55 txtopon 21442 . . . . . 6 (({∅, 𝐴} ∈ (TopOn‘( I ‘𝐴)) ∧ {∅, 𝐵} ∈ (TopOn‘( I ‘𝐵))) → ({∅, 𝐴} ×t {∅, 𝐵}) ∈ (TopOn‘(( I ‘𝐴) × ( I ‘𝐵))))
5652, 54, 55mp2an 708 . . . . 5 ({∅, 𝐴} ×t {∅, 𝐵}) ∈ (TopOn‘(( I ‘𝐴) × ( I ‘𝐵)))
57 topgele 20782 . . . . 5 (({∅, 𝐴} ×t {∅, 𝐵}) ∈ (TopOn‘(( I ‘𝐴) × ( I ‘𝐵))) → ({∅, (( I ‘𝐴) × ( I ‘𝐵))} ⊆ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ ({∅, 𝐴} ×t {∅, 𝐵}) ⊆ 𝒫 (( I ‘𝐴) × ( I ‘𝐵))))
5856, 57ax-mp 5 . . . 4 ({∅, (( I ‘𝐴) × ( I ‘𝐵))} ⊆ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ ({∅, 𝐴} ×t {∅, 𝐵}) ⊆ 𝒫 (( I ‘𝐴) × ( I ‘𝐵)))
5958simpli 473 . . 3 {∅, (( I ‘𝐴) × ( I ‘𝐵))} ⊆ ({∅, 𝐴} ×t {∅, 𝐵})
6050, 59eqssi 3652 . 2 ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (( I ‘𝐴) × ( I ‘𝐵))}
61 txindislem 21484 . . 3 (( I ‘𝐴) × ( I ‘𝐵)) = ( I ‘(𝐴 × 𝐵))
6261preq2i 4304 . 2 {∅, (( I ‘𝐴) × ( I ‘𝐵))} = {∅, ( I ‘(𝐴 × 𝐵))}
63 indislem 20852 . 2 {∅, ( I ‘(𝐴 × 𝐵))} = {∅, (𝐴 × 𝐵)}
6460, 62, 633eqtri 2677 1 ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (𝐴 × 𝐵)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  wrex 2942  wss 3607  c0 3948  𝒫 cpw 4191  {cpr 4212   cuni 4468   I cid 5052   × cxp 5141  cfv 5926  (class class class)co 6690  Topctop 20746  TopOnctopon 20763   ×t ctx 21411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-topgen 16151  df-top 20747  df-topon 20764  df-bases 20798  df-tx 21413
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator