MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txlly Structured version   Visualization version   GIF version

Theorem txlly 21349
Description: If the property 𝐴 is preserved under topological products, then so is the property of being locally 𝐴. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
txlly.1 ((𝑗𝐴𝑘𝐴) → (𝑗 ×t 𝑘) ∈ 𝐴)
Assertion
Ref Expression
txlly ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → (𝑅 ×t 𝑆) ∈ Locally 𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝑅,𝑗,𝑘   𝑆,𝑘
Allowed substitution hint:   𝑆(𝑗)

Proof of Theorem txlly
Dummy variables 𝑟 𝑠 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 21185 . . 3 (𝑅 ∈ Locally 𝐴𝑅 ∈ Top)
2 llytop 21185 . . 3 (𝑆 ∈ Locally 𝐴𝑆 ∈ Top)
3 txtop 21282 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 494 . 2 ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → (𝑅 ×t 𝑆) ∈ Top)
5 eltx 21281 . . . 4 ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → (𝑥 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑥𝑢𝑅𝑣𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥)))
6 simpll 789 . . . . . . . . 9 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑅 ∈ Locally 𝐴)
7 simprll 801 . . . . . . . . 9 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑢𝑅)
8 simprrl 803 . . . . . . . . . 10 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑦 ∈ (𝑢 × 𝑣))
9 xp1st 7143 . . . . . . . . . 10 (𝑦 ∈ (𝑢 × 𝑣) → (1st𝑦) ∈ 𝑢)
108, 9syl 17 . . . . . . . . 9 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → (1st𝑦) ∈ 𝑢)
11 llyi 21187 . . . . . . . . 9 ((𝑅 ∈ Locally 𝐴𝑢𝑅 ∧ (1st𝑦) ∈ 𝑢) → ∃𝑟𝑅 (𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴))
126, 7, 10, 11syl3anc 1323 . . . . . . . 8 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → ∃𝑟𝑅 (𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴))
13 simplr 791 . . . . . . . . 9 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑆 ∈ Locally 𝐴)
14 simprlr 802 . . . . . . . . 9 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑣𝑆)
15 xp2nd 7144 . . . . . . . . . 10 (𝑦 ∈ (𝑢 × 𝑣) → (2nd𝑦) ∈ 𝑣)
168, 15syl 17 . . . . . . . . 9 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → (2nd𝑦) ∈ 𝑣)
17 llyi 21187 . . . . . . . . 9 ((𝑆 ∈ Locally 𝐴𝑣𝑆 ∧ (2nd𝑦) ∈ 𝑣) → ∃𝑠𝑆 (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))
1813, 14, 16, 17syl3anc 1323 . . . . . . . 8 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → ∃𝑠𝑆 (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))
19 reeanv 3097 . . . . . . . . 9 (∃𝑟𝑅𝑠𝑆 ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)) ↔ (∃𝑟𝑅 (𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ ∃𝑠𝑆 (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))
201ad3antrrr 765 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → 𝑅 ∈ Top)
212ad3antlr 766 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → 𝑆 ∈ Top)
22 simprll 801 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → 𝑟𝑅)
23 simprlr 802 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → 𝑠𝑆)
24 txopn 21315 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑟𝑅𝑠𝑆)) → (𝑟 × 𝑠) ∈ (𝑅 ×t 𝑆))
2520, 21, 22, 23, 24syl22anc 1324 . . . . . . . . . . . . 13 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → (𝑟 × 𝑠) ∈ (𝑅 ×t 𝑆))
26 simprl1 1104 . . . . . . . . . . . . . . . 16 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → 𝑟𝑢)
27 simprr1 1107 . . . . . . . . . . . . . . . 16 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → 𝑠𝑣)
28 xpss12 5186 . . . . . . . . . . . . . . . 16 ((𝑟𝑢𝑠𝑣) → (𝑟 × 𝑠) ⊆ (𝑢 × 𝑣))
2926, 27, 28syl2anc 692 . . . . . . . . . . . . . . 15 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → (𝑟 × 𝑠) ⊆ (𝑢 × 𝑣))
30 simprrr 804 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → (𝑢 × 𝑣) ⊆ 𝑥)
3129, 30sylan9ssr 3597 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → (𝑟 × 𝑠) ⊆ 𝑥)
32 vex 3189 . . . . . . . . . . . . . . 15 𝑥 ∈ V
3332elpw2 4788 . . . . . . . . . . . . . 14 ((𝑟 × 𝑠) ∈ 𝒫 𝑥 ↔ (𝑟 × 𝑠) ⊆ 𝑥)
3431, 33sylibr 224 . . . . . . . . . . . . 13 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → (𝑟 × 𝑠) ∈ 𝒫 𝑥)
3525, 34elind 3776 . . . . . . . . . . . 12 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → (𝑟 × 𝑠) ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥))
36 1st2nd2 7150 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑢 × 𝑣) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
378, 36syl 17 . . . . . . . . . . . . . 14 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
3837adantr 481 . . . . . . . . . . . . 13 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
39 simprl2 1105 . . . . . . . . . . . . . . 15 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → (1st𝑦) ∈ 𝑟)
40 simprr2 1108 . . . . . . . . . . . . . . 15 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → (2nd𝑦) ∈ 𝑠)
41 opelxpi 5108 . . . . . . . . . . . . . . 15 (((1st𝑦) ∈ 𝑟 ∧ (2nd𝑦) ∈ 𝑠) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝑟 × 𝑠))
4239, 40, 41syl2anc 692 . . . . . . . . . . . . . 14 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝑟 × 𝑠))
4342adantl 482 . . . . . . . . . . . . 13 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝑟 × 𝑠))
4438, 43eqeltrd 2698 . . . . . . . . . . . 12 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → 𝑦 ∈ (𝑟 × 𝑠))
45 txrest 21344 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑟𝑅𝑠𝑆)) → ((𝑅 ×t 𝑆) ↾t (𝑟 × 𝑠)) = ((𝑅t 𝑟) ×t (𝑆t 𝑠)))
4620, 21, 22, 23, 45syl22anc 1324 . . . . . . . . . . . . 13 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → ((𝑅 ×t 𝑆) ↾t (𝑟 × 𝑠)) = ((𝑅t 𝑟) ×t (𝑆t 𝑠)))
47 simprl3 1106 . . . . . . . . . . . . . . 15 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → (𝑅t 𝑟) ∈ 𝐴)
48 simprr3 1109 . . . . . . . . . . . . . . 15 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → (𝑆t 𝑠) ∈ 𝐴)
49 txlly.1 . . . . . . . . . . . . . . . 16 ((𝑗𝐴𝑘𝐴) → (𝑗 ×t 𝑘) ∈ 𝐴)
5049caovcl 6781 . . . . . . . . . . . . . . 15 (((𝑅t 𝑟) ∈ 𝐴 ∧ (𝑆t 𝑠) ∈ 𝐴) → ((𝑅t 𝑟) ×t (𝑆t 𝑠)) ∈ 𝐴)
5147, 48, 50syl2anc 692 . . . . . . . . . . . . . 14 (((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴))) → ((𝑅t 𝑟) ×t (𝑆t 𝑠)) ∈ 𝐴)
5251adantl 482 . . . . . . . . . . . . 13 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → ((𝑅t 𝑟) ×t (𝑆t 𝑠)) ∈ 𝐴)
5346, 52eqeltrd 2698 . . . . . . . . . . . 12 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → ((𝑅 ×t 𝑆) ↾t (𝑟 × 𝑠)) ∈ 𝐴)
54 eleq2 2687 . . . . . . . . . . . . . 14 (𝑧 = (𝑟 × 𝑠) → (𝑦𝑧𝑦 ∈ (𝑟 × 𝑠)))
55 oveq2 6612 . . . . . . . . . . . . . . 15 (𝑧 = (𝑟 × 𝑠) → ((𝑅 ×t 𝑆) ↾t 𝑧) = ((𝑅 ×t 𝑆) ↾t (𝑟 × 𝑠)))
5655eleq1d 2683 . . . . . . . . . . . . . 14 (𝑧 = (𝑟 × 𝑠) → (((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴 ↔ ((𝑅 ×t 𝑆) ↾t (𝑟 × 𝑠)) ∈ 𝐴))
5754, 56anbi12d 746 . . . . . . . . . . . . 13 (𝑧 = (𝑟 × 𝑠) → ((𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴) ↔ (𝑦 ∈ (𝑟 × 𝑠) ∧ ((𝑅 ×t 𝑆) ↾t (𝑟 × 𝑠)) ∈ 𝐴)))
5857rspcev 3295 . . . . . . . . . . . 12 (((𝑟 × 𝑠) ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥) ∧ (𝑦 ∈ (𝑟 × 𝑠) ∧ ((𝑅 ×t 𝑆) ↾t (𝑟 × 𝑠)) ∈ 𝐴)) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
5935, 44, 53, 58syl12anc 1321 . . . . . . . . . . 11 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ ((𝑟𝑅𝑠𝑆) ∧ ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)))) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
6059expr 642 . . . . . . . . . 10 ((((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) ∧ (𝑟𝑅𝑠𝑆)) → (((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
6160rexlimdvva 3031 . . . . . . . . 9 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → (∃𝑟𝑅𝑠𝑆 ((𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
6219, 61syl5bir 233 . . . . . . . 8 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → ((∃𝑟𝑅 (𝑟𝑢 ∧ (1st𝑦) ∈ 𝑟 ∧ (𝑅t 𝑟) ∈ 𝐴) ∧ ∃𝑠𝑆 (𝑠𝑣 ∧ (2nd𝑦) ∈ 𝑠 ∧ (𝑆t 𝑠) ∈ 𝐴)) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
6312, 18, 62mp2and 714 . . . . . . 7 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ ((𝑢𝑅𝑣𝑆) ∧ (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥))) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
6463expr 642 . . . . . 6 (((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) ∧ (𝑢𝑅𝑣𝑆)) → ((𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
6564rexlimdvva 3031 . . . . 5 ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → (∃𝑢𝑅𝑣𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥) → ∃𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
6665ralimdv 2957 . . . 4 ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → (∀𝑦𝑥𝑢𝑅𝑣𝑆 (𝑦 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑥) → ∀𝑦𝑥𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
675, 66sylbid 230 . . 3 ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → (𝑥 ∈ (𝑅 ×t 𝑆) → ∀𝑦𝑥𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
6867ralrimiv 2959 . 2 ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → ∀𝑥 ∈ (𝑅 ×t 𝑆)∀𝑦𝑥𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴))
69 islly 21181 . 2 ((𝑅 ×t 𝑆) ∈ Locally 𝐴 ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ∀𝑥 ∈ (𝑅 ×t 𝑆)∀𝑦𝑥𝑧 ∈ ((𝑅 ×t 𝑆) ∩ 𝒫 𝑥)(𝑦𝑧 ∧ ((𝑅 ×t 𝑆) ↾t 𝑧) ∈ 𝐴)))
704, 68, 69sylanbrc 697 1 ((𝑅 ∈ Locally 𝐴𝑆 ∈ Locally 𝐴) → (𝑅 ×t 𝑆) ∈ Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  cin 3554  wss 3555  𝒫 cpw 4130  cop 4154   × cxp 5072  cfv 5847  (class class class)co 6604  1st c1st 7111  2nd c2nd 7112  t crest 16002  Topctop 20617  Locally clly 21177   ×t ctx 21273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-rest 16004  df-topgen 16025  df-top 20621  df-bases 20622  df-lly 21179  df-tx 21275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator