Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  txswaphmeo Structured version   Visualization version   GIF version

Theorem txswaphmeo 21656
 Description: There is a homeomorphism from 𝑋 × 𝑌 to 𝑌 × 𝑋. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
txswaphmeo ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem txswaphmeo
StepHypRef Expression
1 simpl 472 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ (TopOn‘𝑋))
2 simpr 476 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ (TopOn‘𝑌))
31, 2cnmpt2nd 21520 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
41, 2cnmpt1st 21519 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
51, 2, 3, 4cnmpt2t 21524 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐾 ×t 𝐽)))
6 opelxpi 5182 . . . . . . . . 9 ((𝑦𝑌𝑥𝑋) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
76ancoms 468 . . . . . . . 8 ((𝑥𝑋𝑦𝑌) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
87adantl 481 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑥𝑋𝑦𝑌)) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
98ralrimivva 3000 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ∀𝑥𝑋𝑦𝑌𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
10 eqid 2651 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)
1110fmpt2 7282 . . . . . 6 (∀𝑥𝑋𝑦𝑌𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋) ↔ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋))
129, 11sylib 208 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋))
13 opelxpi 5182 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
1413ancoms 468 . . . . . . . 8 ((𝑦𝑌𝑥𝑋) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
1514adantl 481 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑦𝑌𝑥𝑋)) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
1615ralrimivva 3000 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ∀𝑦𝑌𝑥𝑋𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
17 eqid 2651 . . . . . . 7 (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)
1817fmpt2 7282 . . . . . 6 (∀𝑦𝑌𝑥𝑋𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌) ↔ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌))
1916, 18sylib 208 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌))
20 txswaphmeolem 21655 . . . . . 6 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∘ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)) = ( I ↾ (𝑌 × 𝑋))
21 txswaphmeolem 21655 . . . . . 6 ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌))
22 fcof1o 6591 . . . . . 6 ((((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋) ∧ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) ∧ (((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∘ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)) = ( I ↾ (𝑌 × 𝑋)) ∧ ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌)))) → ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)))
2320, 21, 22mpanr12 721 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋) ∧ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) → ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)))
2412, 19, 23syl2anc 694 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)))
2524simprd 478 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩))
262, 1cnmpt2nd 21520 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋𝑥) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
272, 1cnmpt1st 21519 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋𝑦) ∈ ((𝐾 ×t 𝐽) Cn 𝐾))
282, 1, 26, 27cnmpt2t 21524 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾)))
2925, 28eqeltrd 2730 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾)))
30 ishmeo 21610 . 2 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)) ↔ ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐾 ×t 𝐽)) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾))))
315, 29, 30sylanbrc 699 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ⟨cop 4216   I cid 5052   × cxp 5141  ◡ccnv 5142   ↾ cres 5145   ∘ ccom 5147  ⟶wf 5922  –1-1-onto→wf1o 5925  ‘cfv 5926  (class class class)co 6690   ↦ cmpt2 6692  TopOnctopon 20763   Cn ccn 21076   ×t ctx 21411  Homeochmeo 21604 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-map 7901  df-topgen 16151  df-top 20747  df-topon 20764  df-bases 20798  df-cn 21079  df-tx 21413  df-hmeo 21606 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator