MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txtop Structured version   Visualization version   GIF version

Theorem txtop 21295
Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
txtop ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)

Proof of Theorem txtop
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . 3 ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
21txval 21290 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
3 topbas 20700 . . . 4 (𝑅 ∈ Top → 𝑅 ∈ TopBases)
4 topbas 20700 . . . 4 (𝑆 ∈ Top → 𝑆 ∈ TopBases)
51txbas 21293 . . . 4 ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases)
63, 4, 5syl2an 494 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases)
7 tgcl 20697 . . 3 (ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ TopBases → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) ∈ Top)
86, 7syl 17 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) ∈ Top)
92, 8eqeltrd 2698 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1987   × cxp 5077  ran crn 5080  cfv 5852  (class class class)co 6610  cmpt2 6612  topGenctg 16030  Topctop 20630  TopBasesctb 20673   ×t ctx 21286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1st 7120  df-2nd 7121  df-topgen 16036  df-top 20631  df-bases 20674  df-tx 21288
This theorem is referenced by:  txtopi  21316  txtopon  21317  txcld  21329  neitx  21333  txlly  21362  txnlly  21363  txcmplem1  21367  txcmp  21369  hausdiag  21371  txhaus  21373  tx1stc  21376  txkgen  21378  xkococn  21386  xkoinjcn  21413  txconn  21415  imasnopn  21416  imasncls  21418  utop2nei  21977  utop3cls  21978  qtophaus  29709  txpconn  30957
  Copyright terms: Public domain W3C validator