MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txuni2 Structured version   Visualization version   GIF version

Theorem txuni2 22167
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
txval.1 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
txuni2.1 𝑋 = 𝑅
txuni2.2 𝑌 = 𝑆
Assertion
Ref Expression
txuni2 (𝑋 × 𝑌) = 𝐵
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem txuni2
Dummy variables 𝑟 𝑠 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5567 . . 3 Rel (𝑋 × 𝑌)
2 txuni2.1 . . . . . . . 8 𝑋 = 𝑅
32eleq2i 2904 . . . . . . 7 (𝑧𝑋𝑧 𝑅)
4 eluni2 4835 . . . . . . 7 (𝑧 𝑅 ↔ ∃𝑟𝑅 𝑧𝑟)
53, 4bitri 277 . . . . . 6 (𝑧𝑋 ↔ ∃𝑟𝑅 𝑧𝑟)
6 txuni2.2 . . . . . . . 8 𝑌 = 𝑆
76eleq2i 2904 . . . . . . 7 (𝑤𝑌𝑤 𝑆)
8 eluni2 4835 . . . . . . 7 (𝑤 𝑆 ↔ ∃𝑠𝑆 𝑤𝑠)
97, 8bitri 277 . . . . . 6 (𝑤𝑌 ↔ ∃𝑠𝑆 𝑤𝑠)
105, 9anbi12i 628 . . . . 5 ((𝑧𝑋𝑤𝑌) ↔ (∃𝑟𝑅 𝑧𝑟 ∧ ∃𝑠𝑆 𝑤𝑠))
11 opelxp 5585 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ (𝑋 × 𝑌) ↔ (𝑧𝑋𝑤𝑌))
12 reeanv 3367 . . . . 5 (∃𝑟𝑅𝑠𝑆 (𝑧𝑟𝑤𝑠) ↔ (∃𝑟𝑅 𝑧𝑟 ∧ ∃𝑠𝑆 𝑤𝑠))
1310, 11, 123bitr4i 305 . . . 4 (⟨𝑧, 𝑤⟩ ∈ (𝑋 × 𝑌) ↔ ∃𝑟𝑅𝑠𝑆 (𝑧𝑟𝑤𝑠))
14 opelxp 5585 . . . . . 6 (⟨𝑧, 𝑤⟩ ∈ (𝑟 × 𝑠) ↔ (𝑧𝑟𝑤𝑠))
15 eqid 2821 . . . . . . . . . 10 (𝑟 × 𝑠) = (𝑟 × 𝑠)
16 xpeq1 5563 . . . . . . . . . . . 12 (𝑥 = 𝑟 → (𝑥 × 𝑦) = (𝑟 × 𝑦))
1716eqeq2d 2832 . . . . . . . . . . 11 (𝑥 = 𝑟 → ((𝑟 × 𝑠) = (𝑥 × 𝑦) ↔ (𝑟 × 𝑠) = (𝑟 × 𝑦)))
18 xpeq2 5570 . . . . . . . . . . . 12 (𝑦 = 𝑠 → (𝑟 × 𝑦) = (𝑟 × 𝑠))
1918eqeq2d 2832 . . . . . . . . . . 11 (𝑦 = 𝑠 → ((𝑟 × 𝑠) = (𝑟 × 𝑦) ↔ (𝑟 × 𝑠) = (𝑟 × 𝑠)))
2017, 19rspc2ev 3634 . . . . . . . . . 10 ((𝑟𝑅𝑠𝑆 ∧ (𝑟 × 𝑠) = (𝑟 × 𝑠)) → ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦))
2115, 20mp3an3 1446 . . . . . . . . 9 ((𝑟𝑅𝑠𝑆) → ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦))
22 vex 3497 . . . . . . . . . . 11 𝑟 ∈ V
23 vex 3497 . . . . . . . . . . 11 𝑠 ∈ V
2422, 23xpex 7470 . . . . . . . . . 10 (𝑟 × 𝑠) ∈ V
25 eqeq1 2825 . . . . . . . . . . 11 (𝑧 = (𝑟 × 𝑠) → (𝑧 = (𝑥 × 𝑦) ↔ (𝑟 × 𝑠) = (𝑥 × 𝑦)))
26252rexbidv 3300 . . . . . . . . . 10 (𝑧 = (𝑟 × 𝑠) → (∃𝑥𝑅𝑦𝑆 𝑧 = (𝑥 × 𝑦) ↔ ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦)))
27 txval.1 . . . . . . . . . . 11 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
28 eqid 2821 . . . . . . . . . . . 12 (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
2928rnmpo 7278 . . . . . . . . . . 11 ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) = {𝑧 ∣ ∃𝑥𝑅𝑦𝑆 𝑧 = (𝑥 × 𝑦)}
3027, 29eqtri 2844 . . . . . . . . . 10 𝐵 = {𝑧 ∣ ∃𝑥𝑅𝑦𝑆 𝑧 = (𝑥 × 𝑦)}
3124, 26, 30elab2 3669 . . . . . . . . 9 ((𝑟 × 𝑠) ∈ 𝐵 ↔ ∃𝑥𝑅𝑦𝑆 (𝑟 × 𝑠) = (𝑥 × 𝑦))
3221, 31sylibr 236 . . . . . . . 8 ((𝑟𝑅𝑠𝑆) → (𝑟 × 𝑠) ∈ 𝐵)
33 elssuni 4860 . . . . . . . 8 ((𝑟 × 𝑠) ∈ 𝐵 → (𝑟 × 𝑠) ⊆ 𝐵)
3432, 33syl 17 . . . . . . 7 ((𝑟𝑅𝑠𝑆) → (𝑟 × 𝑠) ⊆ 𝐵)
3534sseld 3965 . . . . . 6 ((𝑟𝑅𝑠𝑆) → (⟨𝑧, 𝑤⟩ ∈ (𝑟 × 𝑠) → ⟨𝑧, 𝑤⟩ ∈ 𝐵))
3614, 35syl5bir 245 . . . . 5 ((𝑟𝑅𝑠𝑆) → ((𝑧𝑟𝑤𝑠) → ⟨𝑧, 𝑤⟩ ∈ 𝐵))
3736rexlimivv 3292 . . . 4 (∃𝑟𝑅𝑠𝑆 (𝑧𝑟𝑤𝑠) → ⟨𝑧, 𝑤⟩ ∈ 𝐵)
3813, 37sylbi 219 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝑋 × 𝑌) → ⟨𝑧, 𝑤⟩ ∈ 𝐵)
391, 38relssi 5654 . 2 (𝑋 × 𝑌) ⊆ 𝐵
40 elssuni 4860 . . . . . . . . . 10 (𝑥𝑅𝑥 𝑅)
4140, 2sseqtrrdi 4017 . . . . . . . . 9 (𝑥𝑅𝑥𝑋)
42 elssuni 4860 . . . . . . . . . 10 (𝑦𝑆𝑦 𝑆)
4342, 6sseqtrrdi 4017 . . . . . . . . 9 (𝑦𝑆𝑦𝑌)
44 xpss12 5564 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
4541, 43, 44syl2an 597 . . . . . . . 8 ((𝑥𝑅𝑦𝑆) → (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
46 vex 3497 . . . . . . . . . 10 𝑥 ∈ V
47 vex 3497 . . . . . . . . . 10 𝑦 ∈ V
4846, 47xpex 7470 . . . . . . . . 9 (𝑥 × 𝑦) ∈ V
4948elpw 4545 . . . . . . . 8 ((𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌) ↔ (𝑥 × 𝑦) ⊆ (𝑋 × 𝑌))
5045, 49sylibr 236 . . . . . . 7 ((𝑥𝑅𝑦𝑆) → (𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌))
5150rgen2 3203 . . . . . 6 𝑥𝑅𝑦𝑆 (𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌)
5228fmpo 7760 . . . . . 6 (∀𝑥𝑅𝑦𝑆 (𝑥 × 𝑦) ∈ 𝒫 (𝑋 × 𝑌) ↔ (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)):(𝑅 × 𝑆)⟶𝒫 (𝑋 × 𝑌))
5351, 52mpbi 232 . . . . 5 (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)):(𝑅 × 𝑆)⟶𝒫 (𝑋 × 𝑌)
54 frn 6514 . . . . 5 ((𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)):(𝑅 × 𝑆)⟶𝒫 (𝑋 × 𝑌) → ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (𝑋 × 𝑌))
5553, 54ax-mp 5 . . . 4 ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)) ⊆ 𝒫 (𝑋 × 𝑌)
5627, 55eqsstri 4000 . . 3 𝐵 ⊆ 𝒫 (𝑋 × 𝑌)
57 sspwuni 5014 . . 3 (𝐵 ⊆ 𝒫 (𝑋 × 𝑌) ↔ 𝐵 ⊆ (𝑋 × 𝑌))
5856, 57mpbi 232 . 2 𝐵 ⊆ (𝑋 × 𝑌)
5939, 58eqssi 3982 1 (𝑋 × 𝑌) = 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1533  wcel 2110  {cab 2799  wral 3138  wrex 3139  wss 3935  𝒫 cpw 4538  cop 4566   cuni 4831   × cxp 5547  ran crn 5550  wf 6345  cmpo 7152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684
This theorem is referenced by:  txbasex  22168  txtopon  22193  sxsigon  31446
  Copyright terms: Public domain W3C validator