MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12i Structured version   Visualization version   GIF version

Theorem tz6.12i 6695
Description: Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
tz6.12i (𝐵 ≠ ∅ → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))

Proof of Theorem tz6.12i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvex 6682 . . . . 5 (𝐹𝐴) ∈ V
2 neeq1 3078 . . . . . . . 8 ((𝐹𝐴) = 𝑦 → ((𝐹𝐴) ≠ ∅ ↔ 𝑦 ≠ ∅))
3 tz6.12-2 6659 . . . . . . . . . . 11 (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹𝐴) = ∅)
43necon1ai 3043 . . . . . . . . . 10 ((𝐹𝐴) ≠ ∅ → ∃!𝑦 𝐴𝐹𝑦)
5 tz6.12c 6694 . . . . . . . . . 10 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
64, 5syl 17 . . . . . . . . 9 ((𝐹𝐴) ≠ ∅ → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
76biimpcd 251 . . . . . . . 8 ((𝐹𝐴) = 𝑦 → ((𝐹𝐴) ≠ ∅ → 𝐴𝐹𝑦))
82, 7sylbird 262 . . . . . . 7 ((𝐹𝐴) = 𝑦 → (𝑦 ≠ ∅ → 𝐴𝐹𝑦))
98eqcoms 2829 . . . . . 6 (𝑦 = (𝐹𝐴) → (𝑦 ≠ ∅ → 𝐴𝐹𝑦))
10 neeq1 3078 . . . . . 6 (𝑦 = (𝐹𝐴) → (𝑦 ≠ ∅ ↔ (𝐹𝐴) ≠ ∅))
11 breq2 5069 . . . . . 6 (𝑦 = (𝐹𝐴) → (𝐴𝐹𝑦𝐴𝐹(𝐹𝐴)))
129, 10, 113imtr3d 295 . . . . 5 (𝑦 = (𝐹𝐴) → ((𝐹𝐴) ≠ ∅ → 𝐴𝐹(𝐹𝐴)))
131, 12vtocle 3583 . . . 4 ((𝐹𝐴) ≠ ∅ → 𝐴𝐹(𝐹𝐴))
1413a1i 11 . . 3 ((𝐹𝐴) = 𝐵 → ((𝐹𝐴) ≠ ∅ → 𝐴𝐹(𝐹𝐴)))
15 neeq1 3078 . . 3 ((𝐹𝐴) = 𝐵 → ((𝐹𝐴) ≠ ∅ ↔ 𝐵 ≠ ∅))
16 breq2 5069 . . 3 ((𝐹𝐴) = 𝐵 → (𝐴𝐹(𝐹𝐴) ↔ 𝐴𝐹𝐵))
1714, 15, 163imtr3d 295 . 2 ((𝐹𝐴) = 𝐵 → (𝐵 ≠ ∅ → 𝐴𝐹𝐵))
1817com12 32 1 (𝐵 ≠ ∅ → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  ∃!weu 2649  wne 3016  c0 4290   class class class wbr 5065  cfv 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-nul 5209
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-iota 6313  df-fv 6362
This theorem is referenced by:  fvbr0  6696  fvclss  7000  dcomex  9868
  Copyright terms: Public domain W3C validator