MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12i Structured version   Visualization version   GIF version

Theorem tz6.12i 6105
Description: Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
tz6.12i (𝐵 ≠ ∅ → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))

Proof of Theorem tz6.12i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvex 6094 . . . . 5 (𝐹𝐴) ∈ V
2 neeq1 2839 . . . . . . . 8 ((𝐹𝐴) = 𝑦 → ((𝐹𝐴) ≠ ∅ ↔ 𝑦 ≠ ∅))
3 tz6.12-2 6075 . . . . . . . . . . 11 (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹𝐴) = ∅)
43necon1ai 2804 . . . . . . . . . 10 ((𝐹𝐴) ≠ ∅ → ∃!𝑦 𝐴𝐹𝑦)
5 tz6.12c 6104 . . . . . . . . . 10 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
64, 5syl 17 . . . . . . . . 9 ((𝐹𝐴) ≠ ∅ → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
76biimpcd 237 . . . . . . . 8 ((𝐹𝐴) = 𝑦 → ((𝐹𝐴) ≠ ∅ → 𝐴𝐹𝑦))
82, 7sylbird 248 . . . . . . 7 ((𝐹𝐴) = 𝑦 → (𝑦 ≠ ∅ → 𝐴𝐹𝑦))
98eqcoms 2613 . . . . . 6 (𝑦 = (𝐹𝐴) → (𝑦 ≠ ∅ → 𝐴𝐹𝑦))
10 neeq1 2839 . . . . . 6 (𝑦 = (𝐹𝐴) → (𝑦 ≠ ∅ ↔ (𝐹𝐴) ≠ ∅))
11 breq2 4577 . . . . . 6 (𝑦 = (𝐹𝐴) → (𝐴𝐹𝑦𝐴𝐹(𝐹𝐴)))
129, 10, 113imtr3d 280 . . . . 5 (𝑦 = (𝐹𝐴) → ((𝐹𝐴) ≠ ∅ → 𝐴𝐹(𝐹𝐴)))
131, 12vtocle 3250 . . . 4 ((𝐹𝐴) ≠ ∅ → 𝐴𝐹(𝐹𝐴))
1413a1i 11 . . 3 ((𝐹𝐴) = 𝐵 → ((𝐹𝐴) ≠ ∅ → 𝐴𝐹(𝐹𝐴)))
15 neeq1 2839 . . 3 ((𝐹𝐴) = 𝐵 → ((𝐹𝐴) ≠ ∅ ↔ 𝐵 ≠ ∅))
16 breq2 4577 . . 3 ((𝐹𝐴) = 𝐵 → (𝐴𝐹(𝐹𝐴) ↔ 𝐴𝐹𝐵))
1714, 15, 163imtr3d 280 . 2 ((𝐹𝐴) = 𝐵 → (𝐵 ≠ ∅ → 𝐴𝐹𝐵))
1817com12 32 1 (𝐵 ≠ ∅ → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194   = wceq 1474  ∃!weu 2453  wne 2775  c0 3869   class class class wbr 4573  cfv 5786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-nul 4708
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-rab 2900  df-v 3170  df-sbc 3398  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-br 4574  df-iota 5750  df-fv 5794
This theorem is referenced by:  fvbr0  6106  fvclss  6378  dcomex  9125
  Copyright terms: Public domain W3C validator