MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-2 Structured version   Visualization version   GIF version

Theorem tz7.44-2 7548
Description: The value of 𝐹 at a successor ordinal. Part 2 of Theorem 7.44 of [TakeutiZaring] p. 49. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypotheses
Ref Expression
tz7.44.1 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
tz7.44.2 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
tz7.44.3 (𝑦𝑋 → (𝐹𝑦) ∈ V)
tz7.44.4 𝐹 Fn 𝑋
tz7.44.5 Ord 𝑋
Assertion
Ref Expression
tz7.44-2 (suc 𝐵𝑋 → (𝐹‘suc 𝐵) = (𝐻‘(𝐹𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑦,𝐺   𝑥,𝐻   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥)   𝐻(𝑦)   𝑋(𝑥)

Proof of Theorem tz7.44-2
StepHypRef Expression
1 fveq2 6229 . . . 4 (𝑦 = suc 𝐵 → (𝐹𝑦) = (𝐹‘suc 𝐵))
2 reseq2 5423 . . . . 5 (𝑦 = suc 𝐵 → (𝐹𝑦) = (𝐹 ↾ suc 𝐵))
32fveq2d 6233 . . . 4 (𝑦 = suc 𝐵 → (𝐺‘(𝐹𝑦)) = (𝐺‘(𝐹 ↾ suc 𝐵)))
41, 3eqeq12d 2666 . . 3 (𝑦 = suc 𝐵 → ((𝐹𝑦) = (𝐺‘(𝐹𝑦)) ↔ (𝐹‘suc 𝐵) = (𝐺‘(𝐹 ↾ suc 𝐵))))
5 tz7.44.2 . . 3 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
64, 5vtoclga 3303 . 2 (suc 𝐵𝑋 → (𝐹‘suc 𝐵) = (𝐺‘(𝐹 ↾ suc 𝐵)))
72eleq1d 2715 . . . 4 (𝑦 = suc 𝐵 → ((𝐹𝑦) ∈ V ↔ (𝐹 ↾ suc 𝐵) ∈ V))
8 tz7.44.3 . . . 4 (𝑦𝑋 → (𝐹𝑦) ∈ V)
97, 8vtoclga 3303 . . 3 (suc 𝐵𝑋 → (𝐹 ↾ suc 𝐵) ∈ V)
10 noel 3952 . . . . . . 7 ¬ 𝐵 ∈ ∅
11 dmeq 5356 . . . . . . . . 9 ((𝐹 ↾ suc 𝐵) = ∅ → dom (𝐹 ↾ suc 𝐵) = dom ∅)
12 dm0 5371 . . . . . . . . 9 dom ∅ = ∅
1311, 12syl6eq 2701 . . . . . . . 8 ((𝐹 ↾ suc 𝐵) = ∅ → dom (𝐹 ↾ suc 𝐵) = ∅)
14 tz7.44.5 . . . . . . . . . . . . 13 Ord 𝑋
15 ordsson 7031 . . . . . . . . . . . . 13 (Ord 𝑋𝑋 ⊆ On)
1614, 15ax-mp 5 . . . . . . . . . . . 12 𝑋 ⊆ On
17 ordtr 5775 . . . . . . . . . . . . . 14 (Ord 𝑋 → Tr 𝑋)
1814, 17ax-mp 5 . . . . . . . . . . . . 13 Tr 𝑋
19 trsuc 5848 . . . . . . . . . . . . 13 ((Tr 𝑋 ∧ suc 𝐵𝑋) → 𝐵𝑋)
2018, 19mpan 706 . . . . . . . . . . . 12 (suc 𝐵𝑋𝐵𝑋)
2116, 20sseldi 3634 . . . . . . . . . . 11 (suc 𝐵𝑋𝐵 ∈ On)
22 sucidg 5841 . . . . . . . . . . 11 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
2321, 22syl 17 . . . . . . . . . 10 (suc 𝐵𝑋𝐵 ∈ suc 𝐵)
24 dmres 5454 . . . . . . . . . . 11 dom (𝐹 ↾ suc 𝐵) = (suc 𝐵 ∩ dom 𝐹)
25 ordelss 5777 . . . . . . . . . . . . . 14 ((Ord 𝑋 ∧ suc 𝐵𝑋) → suc 𝐵𝑋)
2614, 25mpan 706 . . . . . . . . . . . . 13 (suc 𝐵𝑋 → suc 𝐵𝑋)
27 tz7.44.4 . . . . . . . . . . . . . 14 𝐹 Fn 𝑋
28 fndm 6028 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
2927, 28ax-mp 5 . . . . . . . . . . . . 13 dom 𝐹 = 𝑋
3026, 29syl6sseqr 3685 . . . . . . . . . . . 12 (suc 𝐵𝑋 → suc 𝐵 ⊆ dom 𝐹)
31 df-ss 3621 . . . . . . . . . . . 12 (suc 𝐵 ⊆ dom 𝐹 ↔ (suc 𝐵 ∩ dom 𝐹) = suc 𝐵)
3230, 31sylib 208 . . . . . . . . . . 11 (suc 𝐵𝑋 → (suc 𝐵 ∩ dom 𝐹) = suc 𝐵)
3324, 32syl5eq 2697 . . . . . . . . . 10 (suc 𝐵𝑋 → dom (𝐹 ↾ suc 𝐵) = suc 𝐵)
3423, 33eleqtrrd 2733 . . . . . . . . 9 (suc 𝐵𝑋𝐵 ∈ dom (𝐹 ↾ suc 𝐵))
35 eleq2 2719 . . . . . . . . 9 (dom (𝐹 ↾ suc 𝐵) = ∅ → (𝐵 ∈ dom (𝐹 ↾ suc 𝐵) ↔ 𝐵 ∈ ∅))
3634, 35syl5ibcom 235 . . . . . . . 8 (suc 𝐵𝑋 → (dom (𝐹 ↾ suc 𝐵) = ∅ → 𝐵 ∈ ∅))
3713, 36syl5 34 . . . . . . 7 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵) = ∅ → 𝐵 ∈ ∅))
3810, 37mtoi 190 . . . . . 6 (suc 𝐵𝑋 → ¬ (𝐹 ↾ suc 𝐵) = ∅)
3938iffalsed 4130 . . . . 5 (suc 𝐵𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))) = if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))))
40 nlimsucg 7084 . . . . . . . 8 (𝐵 ∈ On → ¬ Lim suc 𝐵)
4121, 40syl 17 . . . . . . 7 (suc 𝐵𝑋 → ¬ Lim suc 𝐵)
42 limeq 5773 . . . . . . . 8 (dom (𝐹 ↾ suc 𝐵) = suc 𝐵 → (Lim dom (𝐹 ↾ suc 𝐵) ↔ Lim suc 𝐵))
4333, 42syl 17 . . . . . . 7 (suc 𝐵𝑋 → (Lim dom (𝐹 ↾ suc 𝐵) ↔ Lim suc 𝐵))
4441, 43mtbird 314 . . . . . 6 (suc 𝐵𝑋 → ¬ Lim dom (𝐹 ↾ suc 𝐵))
4544iffalsed 4130 . . . . 5 (suc 𝐵𝑋 → if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))) = (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))
4633unieqd 4478 . . . . . . . . 9 (suc 𝐵𝑋 dom (𝐹 ↾ suc 𝐵) = suc 𝐵)
47 eloni 5771 . . . . . . . . . . 11 (𝐵 ∈ On → Ord 𝐵)
48 ordunisuc 7074 . . . . . . . . . . 11 (Ord 𝐵 suc 𝐵 = 𝐵)
4947, 48syl 17 . . . . . . . . . 10 (𝐵 ∈ On → suc 𝐵 = 𝐵)
5021, 49syl 17 . . . . . . . . 9 (suc 𝐵𝑋 suc 𝐵 = 𝐵)
5146, 50eqtrd 2685 . . . . . . . 8 (suc 𝐵𝑋 dom (𝐹 ↾ suc 𝐵) = 𝐵)
5251fveq2d 6233 . . . . . . 7 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)) = ((𝐹 ↾ suc 𝐵)‘𝐵))
53 fvres 6245 . . . . . . . 8 (𝐵 ∈ suc 𝐵 → ((𝐹 ↾ suc 𝐵)‘𝐵) = (𝐹𝐵))
5423, 53syl 17 . . . . . . 7 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵)‘𝐵) = (𝐹𝐵))
5552, 54eqtrd 2685 . . . . . 6 (suc 𝐵𝑋 → ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)) = (𝐹𝐵))
5655fveq2d 6233 . . . . 5 (suc 𝐵𝑋 → (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))) = (𝐻‘(𝐹𝐵)))
5739, 45, 563eqtrd 2689 . . . 4 (suc 𝐵𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))) = (𝐻‘(𝐹𝐵)))
58 fvex 6239 . . . 4 (𝐻‘(𝐹𝐵)) ∈ V
5957, 58syl6eqel 2738 . . 3 (suc 𝐵𝑋 → if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))) ∈ V)
60 eqeq1 2655 . . . . 5 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥 = ∅ ↔ (𝐹 ↾ suc 𝐵) = ∅))
61 dmeq 5356 . . . . . . 7 (𝑥 = (𝐹 ↾ suc 𝐵) → dom 𝑥 = dom (𝐹 ↾ suc 𝐵))
62 limeq 5773 . . . . . . 7 (dom 𝑥 = dom (𝐹 ↾ suc 𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹 ↾ suc 𝐵)))
6361, 62syl 17 . . . . . 6 (𝑥 = (𝐹 ↾ suc 𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹 ↾ suc 𝐵)))
64 rneq 5383 . . . . . . 7 (𝑥 = (𝐹 ↾ suc 𝐵) → ran 𝑥 = ran (𝐹 ↾ suc 𝐵))
6564unieqd 4478 . . . . . 6 (𝑥 = (𝐹 ↾ suc 𝐵) → ran 𝑥 = ran (𝐹 ↾ suc 𝐵))
66 fveq1 6228 . . . . . . . 8 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥 dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘ dom 𝑥))
6761unieqd 4478 . . . . . . . . 9 (𝑥 = (𝐹 ↾ suc 𝐵) → dom 𝑥 = dom (𝐹 ↾ suc 𝐵))
6867fveq2d 6233 . . . . . . . 8 (𝑥 = (𝐹 ↾ suc 𝐵) → ((𝐹 ↾ suc 𝐵)‘ dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))
6966, 68eqtrd 2685 . . . . . . 7 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝑥 dom 𝑥) = ((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))
7069fveq2d 6233 . . . . . 6 (𝑥 = (𝐹 ↾ suc 𝐵) → (𝐻‘(𝑥 dom 𝑥)) = (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))
7163, 65, 70ifbieq12d 4146 . . . . 5 (𝑥 = (𝐹 ↾ suc 𝐵) → if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥))) = if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵)))))
7260, 71ifbieq2d 4144 . . . 4 (𝑥 = (𝐹 ↾ suc 𝐵) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))) = if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))))
73 tz7.44.1 . . . 4 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
7472, 73fvmptg 6319 . . 3 (((𝐹 ↾ suc 𝐵) ∈ V ∧ if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))) ∈ V) → (𝐺‘(𝐹 ↾ suc 𝐵)) = if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))))
759, 59, 74syl2anc 694 . 2 (suc 𝐵𝑋 → (𝐺‘(𝐹 ↾ suc 𝐵)) = if((𝐹 ↾ suc 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ suc 𝐵), ran (𝐹 ↾ suc 𝐵), (𝐻‘((𝐹 ↾ suc 𝐵)‘ dom (𝐹 ↾ suc 𝐵))))))
766, 75, 573eqtrd 2689 1 (suc 𝐵𝑋 → (𝐹‘suc 𝐵) = (𝐻‘(𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196   = wceq 1523  wcel 2030  Vcvv 3231  cin 3606  wss 3607  c0 3948  ifcif 4119   cuni 4468  cmpt 4762  Tr wtr 4785  dom cdm 5143  ran crn 5144  cres 5145  Ord word 5760  Oncon0 5761  Lim wlim 5762  suc csuc 5763   Fn wfn 5921  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934
This theorem is referenced by:  rdgsucg  7564
  Copyright terms: Public domain W3C validator