MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48-2 Structured version   Visualization version   GIF version

Theorem tz7.48-2 8080
Description: Proposition 7.48(2) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.) (Revised by David Abernethy, 5-May-2013.)
Hypothesis
Ref Expression
tz7.48.1 𝐹 Fn On
Assertion
Ref Expression
tz7.48-2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem tz7.48-2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssid 3991 . . 3 On ⊆ On
2 onelon 6218 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
32ancoms 461 . . . . . . . 8 ((𝑦𝑥𝑥 ∈ On) → 𝑦 ∈ On)
4 tz7.48.1 . . . . . . . . . . 11 𝐹 Fn On
5 fndm 6457 . . . . . . . . . . 11 (𝐹 Fn On → dom 𝐹 = On)
64, 5ax-mp 5 . . . . . . . . . 10 dom 𝐹 = On
76eleq2i 2906 . . . . . . . . 9 (𝑦 ∈ dom 𝐹𝑦 ∈ On)
8 fnfun 6455 . . . . . . . . . . . . 13 (𝐹 Fn On → Fun 𝐹)
94, 8ax-mp 5 . . . . . . . . . . . 12 Fun 𝐹
10 funfvima 6994 . . . . . . . . . . . 12 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
119, 10mpan 688 . . . . . . . . . . 11 (𝑦 ∈ dom 𝐹 → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
1211impcom 410 . . . . . . . . . 10 ((𝑦𝑥𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ (𝐹𝑥))
13 eleq1a 2910 . . . . . . . . . . 11 ((𝐹𝑦) ∈ (𝐹𝑥) → ((𝐹𝑥) = (𝐹𝑦) → (𝐹𝑥) ∈ (𝐹𝑥)))
14 eldifn 4106 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) ∈ (𝐹𝑥))
1513, 14nsyli 160 . . . . . . . . . 10 ((𝐹𝑦) ∈ (𝐹𝑥) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
1612, 15syl 17 . . . . . . . . 9 ((𝑦𝑥𝑦 ∈ dom 𝐹) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
177, 16sylan2br 596 . . . . . . . 8 ((𝑦𝑥𝑦 ∈ On) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
183, 17syldan 593 . . . . . . 7 ((𝑦𝑥𝑥 ∈ On) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
1918expimpd 456 . . . . . 6 (𝑦𝑥 → ((𝑥 ∈ On ∧ (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ¬ (𝐹𝑥) = (𝐹𝑦)))
2019com12 32 . . . . 5 ((𝑥 ∈ On ∧ (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))
2120ralrimiv 3183 . . . 4 ((𝑥 ∈ On ∧ (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦))
2221ralimiaa 3161 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦))
234tz7.48lem 8079 . . 3 ((On ⊆ On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → Fun (𝐹 ↾ On))
241, 22, 23sylancr 589 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun (𝐹 ↾ On))
25 fnrel 6456 . . . . . 6 (𝐹 Fn On → Rel 𝐹)
264, 25ax-mp 5 . . . . 5 Rel 𝐹
276eqimssi 4027 . . . . 5 dom 𝐹 ⊆ On
28 relssres 5895 . . . . 5 ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹)
2926, 27, 28mp2an 690 . . . 4 (𝐹 ↾ On) = 𝐹
3029cnveqi 5747 . . 3 (𝐹 ↾ On) = 𝐹
3130funeqi 6378 . 2 (Fun (𝐹 ↾ On) ↔ Fun 𝐹)
3224, 31sylib 220 1 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  cdif 3935  wss 3938  ccnv 5556  dom cdm 5557  cres 5559  cima 5560  Rel wrel 5562  Oncon0 6193  Fun wfun 6351   Fn wfn 6352  cfv 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fv 6365
This theorem is referenced by:  tz7.48-3  8082
  Copyright terms: Public domain W3C validator