![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz9.12lem1 | Structured version Visualization version GIF version |
Description: Lemma for tz9.12 8826. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
tz9.12lem.1 | ⊢ 𝐴 ∈ V |
tz9.12lem.2 | ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) |
Ref | Expression |
---|---|
tz9.12lem1 | ⊢ (𝐹 “ 𝐴) ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5635 | . 2 ⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 | |
2 | tz9.12lem.2 | . . . 4 ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
3 | 2 | rnmpt 5526 | . . 3 ⊢ ran 𝐹 = {𝑥 ∣ ∃𝑧 ∈ V 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}} |
4 | id 22 | . . . . . 6 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
5 | ssrab2 3828 | . . . . . . 7 ⊢ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ⊆ On | |
6 | eqvisset 3351 | . . . . . . . 8 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ V) | |
7 | intex 4969 | . . . . . . . 8 ⊢ ({𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ≠ ∅ ↔ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ V) | |
8 | 6, 7 | sylibr 224 | . . . . . . 7 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ≠ ∅) |
9 | oninton 7165 | . . . . . . 7 ⊢ (({𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ⊆ On ∧ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ≠ ∅) → ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ On) | |
10 | 5, 8, 9 | sylancr 698 | . . . . . 6 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} ∈ On) |
11 | 4, 10 | eqeltrd 2839 | . . . . 5 ⊢ (𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → 𝑥 ∈ On) |
12 | 11 | rexlimivw 3167 | . . . 4 ⊢ (∃𝑧 ∈ V 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} → 𝑥 ∈ On) |
13 | 12 | abssi 3818 | . . 3 ⊢ {𝑥 ∣ ∃𝑧 ∈ V 𝑥 = ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}} ⊆ On |
14 | 3, 13 | eqsstri 3776 | . 2 ⊢ ran 𝐹 ⊆ On |
15 | 1, 14 | sstri 3753 | 1 ⊢ (𝐹 “ 𝐴) ⊆ On |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 {cab 2746 ≠ wne 2932 ∃wrex 3051 {crab 3054 Vcvv 3340 ⊆ wss 3715 ∅c0 4058 ∩ cint 4627 ↦ cmpt 4881 ran crn 5267 “ cima 5269 Oncon0 5884 ‘cfv 6049 𝑅1cr1 8798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 |
This theorem is referenced by: tz9.12lem2 8824 tz9.12lem3 8825 |
Copyright terms: Public domain | W3C validator |