Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ubelsupr Structured version   Visualization version   GIF version

Theorem ubelsupr 38659
Description: If U belongs to A and U is an upper bound, then U is the sup of A. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Assertion
Ref Expression
ubelsupr ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑈 = sup(𝐴, ℝ, < ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑈

Proof of Theorem ubelsupr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1059 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝐴 ⊆ ℝ)
2 simp2 1060 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑈𝐴)
3 ne0i 3897 . . . . 5 (𝑈𝐴𝐴 ≠ ∅)
42, 3syl 17 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝐴 ≠ ∅)
51, 2sseldd 3584 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑈 ∈ ℝ)
6 simp3 1061 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → ∀𝑥𝐴 𝑥𝑈)
7 breq2 4617 . . . . . . 7 (𝑦 = 𝑈 → (𝑥𝑦𝑥𝑈))
87ralbidv 2980 . . . . . 6 (𝑦 = 𝑈 → (∀𝑥𝐴 𝑥𝑦 ↔ ∀𝑥𝐴 𝑥𝑈))
98rspcev 3295 . . . . 5 ((𝑈 ∈ ℝ ∧ ∀𝑥𝐴 𝑥𝑈) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
105, 6, 9syl2anc 692 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
111, 4, 103jca 1240 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦))
12 suprub 10928 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝑈𝐴) → 𝑈 ≤ sup(𝐴, ℝ, < ))
1311, 2, 12syl2anc 692 . 2 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑈 ≤ sup(𝐴, ℝ, < ))
14 suprleub 10933 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝑈 ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ 𝑈 ↔ ∀𝑥𝐴 𝑥𝑈))
1511, 5, 14syl2anc 692 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → (sup(𝐴, ℝ, < ) ≤ 𝑈 ↔ ∀𝑥𝐴 𝑥𝑈))
166, 15mpbird 247 . 2 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → sup(𝐴, ℝ, < ) ≤ 𝑈)
17 suprcl 10927 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) → sup(𝐴, ℝ, < ) ∈ ℝ)
1811, 17syl 17 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → sup(𝐴, ℝ, < ) ∈ ℝ)
195, 18letri3d 10123 . 2 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → (𝑈 = sup(𝐴, ℝ, < ) ↔ (𝑈 ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ 𝑈)))
2013, 16, 19mpbir2and 956 1 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑈 = sup(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  wss 3555  c0 3891   class class class wbr 4613  supcsup 8290  cr 9879   < clt 10018  cle 10019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213
This theorem is referenced by:  cncmpmax  38671
  Copyright terms: Public domain W3C validator