MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubthlem1 Structured version   Visualization version   GIF version

Theorem ubthlem1 26889
Description: Lemma for ubth 26892. The function 𝐴 exhibits a countable collection of sets that are closed, being the inverse image under 𝑡 of the closed ball of radius 𝑘, and by assumption they cover 𝑋. Thus, by the Baire Category theorem bcth2 22799, for some 𝑛 the set 𝐴𝑛 has an interior, meaning that there is a closed ball {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} in the set. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubthlem.3 𝐷 = (IndMet‘𝑈)
ubthlem.4 𝐽 = (MetOpen‘𝐷)
ubthlem.5 𝑈 ∈ CBan
ubthlem.6 𝑊 ∈ NrmCVec
ubthlem.7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
ubthlem.8 (𝜑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
ubthlem.9 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
Assertion
Ref Expression
ubthlem1 (𝜑 → ∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))
Distinct variable groups:   𝑘,𝑐,𝑛,𝑟,𝑥,𝑦,𝑧,𝐴   𝑡,𝑐,𝐷,𝑘,𝑛,𝑟,𝑥,𝑧   𝑘,𝐽,𝑛   𝑦,𝑡,𝐽,𝑥   𝑁,𝑐,𝑘,𝑛,𝑟,𝑡,𝑥,𝑦,𝑧   𝜑,𝑐,𝑘,𝑛,𝑟,𝑡,𝑥,𝑦   𝑇,𝑐,𝑘,𝑛,𝑟,𝑡,𝑥,𝑦,𝑧   𝑈,𝑐,𝑛,𝑟,𝑡,𝑥,𝑦,𝑧   𝑊,𝑐,𝑛,𝑟,𝑡,𝑥,𝑦   𝑋,𝑐,𝑘,𝑛,𝑟,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑡)   𝐷(𝑦)   𝑈(𝑘)   𝐽(𝑧,𝑟,𝑐)   𝑊(𝑧,𝑘)

Proof of Theorem ubthlem1
StepHypRef Expression
1 rzal 3928 . . . . . . . . 9 (𝑇 = ∅ → ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘)
21ralrimivw 2854 . . . . . . . 8 (𝑇 = ∅ → ∀𝑧𝑋𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘)
3 rabid2 3000 . . . . . . . 8 (𝑋 = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ↔ ∀𝑧𝑋𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘)
42, 3sylibr 222 . . . . . . 7 (𝑇 = ∅ → 𝑋 = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
54eqcomd 2520 . . . . . 6 (𝑇 = ∅ → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} = 𝑋)
65eleq1d 2576 . . . . 5 (𝑇 = ∅ → ({𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽) ↔ 𝑋 ∈ (Clsd‘𝐽)))
7 iinrab 4416 . . . . . . 7 (𝑇 ≠ ∅ → 𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
87adantl 480 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑇 ≠ ∅) → 𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
9 id 22 . . . . . . 7 (𝑇 ≠ ∅ → 𝑇 ≠ ∅)
10 ubthlem.7 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
1110sselda 3472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
12 ubthlem.3 . . . . . . . . . . . . . . . . . . . 20 𝐷 = (IndMet‘𝑈)
13 eqid 2514 . . . . . . . . . . . . . . . . . . . 20 (IndMet‘𝑊) = (IndMet‘𝑊)
14 ubthlem.4 . . . . . . . . . . . . . . . . . . . 20 𝐽 = (MetOpen‘𝐷)
15 eqid 2514 . . . . . . . . . . . . . . . . . . . 20 (MetOpen‘(IndMet‘𝑊)) = (MetOpen‘(IndMet‘𝑊))
16 eqid 2514 . . . . . . . . . . . . . . . . . . . 20 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
17 ubthlem.5 . . . . . . . . . . . . . . . . . . . . 21 𝑈 ∈ CBan
18 bnnv 26885 . . . . . . . . . . . . . . . . . . . . 21 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
1917, 18ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 𝑈 ∈ NrmCVec
20 ubthlem.6 . . . . . . . . . . . . . . . . . . . 20 𝑊 ∈ NrmCVec
2112, 13, 14, 15, 16, 19, 20blocn2 26826 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))))
22 ubth.1 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑋 = (BaseSet‘𝑈)
2322, 12cbncms 26884 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
2417, 23ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 𝐷 ∈ (CMet‘𝑋)
25 cmetmet 22757 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
26 metxmet 21849 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2724, 25, 26mp2b 10 . . . . . . . . . . . . . . . . . . . . 21 𝐷 ∈ (∞Met‘𝑋)
2814mopntopon 21954 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
2927, 28ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 𝐽 ∈ (TopOn‘𝑋)
30 eqid 2514 . . . . . . . . . . . . . . . . . . . . . . 23 (BaseSet‘𝑊) = (BaseSet‘𝑊)
3130, 13imsxmet 26701 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ NrmCVec → (IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)))
3220, 31ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊))
3315mopntopon 21954 . . . . . . . . . . . . . . . . . . . . 21 ((IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)) → (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊)))
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))
35 iscncl 20784 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ (TopOn‘𝑋) ∧ (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))) → (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽))))
3629, 34, 35mp2an 703 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
3721, 36sylib 206 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝑈 BLnOp 𝑊) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
3811, 37syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
3938simpld 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → 𝑡:𝑋⟶(BaseSet‘𝑊))
4039adantlr 746 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → 𝑡:𝑋⟶(BaseSet‘𝑊))
4140ffvelrnda 6150 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) ∧ 𝑥𝑋) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
4241biantrurd 527 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡𝑥)) ≤ 𝑘 ↔ ((𝑡𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑁‘(𝑡𝑥)) ≤ 𝑘)))
43 fveq2 5986 . . . . . . . . . . . . . . 15 (𝑦 = (𝑡𝑥) → (𝑁𝑦) = (𝑁‘(𝑡𝑥)))
4443breq1d 4491 . . . . . . . . . . . . . 14 (𝑦 = (𝑡𝑥) → ((𝑁𝑦) ≤ 𝑘 ↔ (𝑁‘(𝑡𝑥)) ≤ 𝑘))
4544elrab 3235 . . . . . . . . . . . . 13 ((𝑡𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} ↔ ((𝑡𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑁‘(𝑡𝑥)) ≤ 𝑘))
4642, 45syl6bbr 276 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡𝑥)) ≤ 𝑘 ↔ (𝑡𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}))
4746pm5.32da 670 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → ((𝑥𝑋 ∧ (𝑁‘(𝑡𝑥)) ≤ 𝑘) ↔ (𝑥𝑋 ∧ (𝑡𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘})))
48 fveq2 5986 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → (𝑡𝑧) = (𝑡𝑥))
4948fveq2d 5990 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡𝑥)))
5049breq1d 4491 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝑁‘(𝑡𝑧)) ≤ 𝑘 ↔ (𝑁‘(𝑡𝑥)) ≤ 𝑘))
5150elrab 3235 . . . . . . . . . . . 12 (𝑥 ∈ {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ↔ (𝑥𝑋 ∧ (𝑁‘(𝑡𝑥)) ≤ 𝑘))
5251a1i 11 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ↔ (𝑥𝑋 ∧ (𝑁‘(𝑡𝑥)) ≤ 𝑘)))
53 ffn 5843 . . . . . . . . . . . 12 (𝑡:𝑋⟶(BaseSet‘𝑊) → 𝑡 Fn 𝑋)
54 elpreima 6128 . . . . . . . . . . . 12 (𝑡 Fn 𝑋 → (𝑥 ∈ (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}) ↔ (𝑥𝑋 ∧ (𝑡𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘})))
5540, 53, 543syl 18 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → (𝑥 ∈ (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}) ↔ (𝑥𝑋 ∧ (𝑡𝑥) ∈ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘})))
5647, 52, 553bitr4d 298 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ↔ 𝑥 ∈ (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘})))
5756eqrdv 2512 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} = (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}))
58 nnre 10781 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
5958ad2antlr 758 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → 𝑘 ∈ ℝ)
6059rexrd 9843 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → 𝑘 ∈ ℝ*)
61 eqid 2514 . . . . . . . . . . . . . 14 (0vec𝑊) = (0vec𝑊)
6230, 61nvzcl 26632 . . . . . . . . . . . . 13 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
6320, 62ax-mp 5 . . . . . . . . . . . 12 (0vec𝑊) ∈ (BaseSet‘𝑊)
64 ubth.2 . . . . . . . . . . . . . . . . . 18 𝑁 = (normCV𝑊)
6530, 61, 64, 13nvnd 26697 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑊)) → (𝑁𝑦) = (𝑦(IndMet‘𝑊)(0vec𝑊)))
6620, 65mpan 701 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (BaseSet‘𝑊) → (𝑁𝑦) = (𝑦(IndMet‘𝑊)(0vec𝑊)))
67 xmetsym 21862 . . . . . . . . . . . . . . . . 17 (((IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)) ∧ (0vec𝑊) ∈ (BaseSet‘𝑊) ∧ 𝑦 ∈ (BaseSet‘𝑊)) → ((0vec𝑊)(IndMet‘𝑊)𝑦) = (𝑦(IndMet‘𝑊)(0vec𝑊)))
6832, 63, 67mp3an12 1405 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (BaseSet‘𝑊) → ((0vec𝑊)(IndMet‘𝑊)𝑦) = (𝑦(IndMet‘𝑊)(0vec𝑊)))
6966, 68eqtr4d 2551 . . . . . . . . . . . . . . 15 (𝑦 ∈ (BaseSet‘𝑊) → (𝑁𝑦) = ((0vec𝑊)(IndMet‘𝑊)𝑦))
7069breq1d 4491 . . . . . . . . . . . . . 14 (𝑦 ∈ (BaseSet‘𝑊) → ((𝑁𝑦) ≤ 𝑘 ↔ ((0vec𝑊)(IndMet‘𝑊)𝑦) ≤ 𝑘))
7170rabbiia 3065 . . . . . . . . . . . . 13 {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} = {𝑦 ∈ (BaseSet‘𝑊) ∣ ((0vec𝑊)(IndMet‘𝑊)𝑦) ≤ 𝑘}
7215, 71blcld 22020 . . . . . . . . . . . 12 (((IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)) ∧ (0vec𝑊) ∈ (BaseSet‘𝑊) ∧ 𝑘 ∈ ℝ*) → {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊))))
7332, 63, 72mp3an12 1405 . . . . . . . . . . 11 (𝑘 ∈ ℝ* → {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊))))
7460, 73syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊))))
7538simprd 477 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽))
7675adantlr 746 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽))
77 imaeq2 5271 . . . . . . . . . . . 12 (𝑥 = {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} → (𝑡𝑥) = (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}))
7877eleq1d 2576 . . . . . . . . . . 11 (𝑥 = {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} → ((𝑡𝑥) ∈ (Clsd‘𝐽) ↔ (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}) ∈ (Clsd‘𝐽)))
7978rspcv 3182 . . . . . . . . . 10 ({𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘} ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊))) → (∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽) → (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}) ∈ (Clsd‘𝐽)))
8074, 76, 79sylc 62 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → (𝑡 “ {𝑦 ∈ (BaseSet‘𝑊) ∣ (𝑁𝑦) ≤ 𝑘}) ∈ (Clsd‘𝐽))
8157, 80eqeltrd 2592 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑡𝑇) → {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
8281ralrimiva 2853 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ∀𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
83 iincld 20554 . . . . . . 7 ((𝑇 ≠ ∅ ∧ ∀𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽)) → 𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
849, 82, 83syl2anr 493 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑇 ≠ ∅) → 𝑡𝑇 {𝑧𝑋 ∣ (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
858, 84eqeltrrd 2593 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑇 ≠ ∅) → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
8614mopntop 21955 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
8727, 86ax-mp 5 . . . . . . 7 𝐽 ∈ Top
8829toponunii 20448 . . . . . . . 8 𝑋 = 𝐽
8988topcld 20550 . . . . . . 7 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
9087, 89ax-mp 5 . . . . . 6 𝑋 ∈ (Clsd‘𝐽)
9190a1i 11 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑋 ∈ (Clsd‘𝐽))
926, 85, 91pm2.61ne 2771 . . . 4 ((𝜑𝑘 ∈ ℕ) → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ (Clsd‘𝐽))
93 ubthlem.9 . . . 4 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
9492, 93fmptd 6175 . . 3 (𝜑𝐴:ℕ⟶(Clsd‘𝐽))
95 frn 5851 . . . . . . 7 (𝐴:ℕ⟶(Clsd‘𝐽) → ran 𝐴 ⊆ (Clsd‘𝐽))
9694, 95syl 17 . . . . . 6 (𝜑 → ran 𝐴 ⊆ (Clsd‘𝐽))
9788cldss2 20545 . . . . . 6 (Clsd‘𝐽) ⊆ 𝒫 𝑋
9896, 97syl6ss 3484 . . . . 5 (𝜑 → ran 𝐴 ⊆ 𝒫 𝑋)
99 sspwuni 4445 . . . . 5 (ran 𝐴 ⊆ 𝒫 𝑋 ran 𝐴𝑋)
10098, 99sylib 206 . . . 4 (𝜑 ran 𝐴𝑋)
101 ubthlem.8 . . . . . 6 (𝜑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
102 arch 11043 . . . . . . . . . 10 (𝑐 ∈ ℝ → ∃𝑘 ∈ ℕ 𝑐 < 𝑘)
103102adantl 480 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) → ∃𝑘 ∈ ℕ 𝑐 < 𝑘)
104 simpr 475 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
105 ltle 9875 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑐 < 𝑘𝑐𝑘))
106104, 58, 105syl2an 492 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝑐 < 𝑘𝑐𝑘))
107106impr 646 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) → 𝑐𝑘)
108107adantr 479 . . . . . . . . . . . . . 14 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → 𝑐𝑘)
10939ffvelrnda 6150 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
110109an32s 841 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑋) ∧ 𝑡𝑇) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
11130, 64nvcl 26665 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
11220, 110, 111sylancr 693 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑡𝑇) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
113112adantlr 746 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑡𝑇) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
114113adantlr 746 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
115 simpllr 794 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → 𝑐 ∈ ℝ)
116 simplrl 795 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → 𝑘 ∈ ℕ)
117116, 58syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → 𝑘 ∈ ℝ)
118 letr 9880 . . . . . . . . . . . . . . 15 (((𝑁‘(𝑡𝑥)) ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (((𝑁‘(𝑡𝑥)) ≤ 𝑐𝑐𝑘) → (𝑁‘(𝑡𝑥)) ≤ 𝑘))
119114, 115, 117, 118syl3anc 1317 . . . . . . . . . . . . . 14 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → (((𝑁‘(𝑡𝑥)) ≤ 𝑐𝑐𝑘) → (𝑁‘(𝑡𝑥)) ≤ 𝑘))
120108, 119mpan2d 705 . . . . . . . . . . . . 13 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) ∧ 𝑡𝑇) → ((𝑁‘(𝑡𝑥)) ≤ 𝑐 → (𝑁‘(𝑡𝑥)) ≤ 𝑘))
121120ralimdva 2849 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ (𝑘 ∈ ℕ ∧ 𝑐 < 𝑘)) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 → ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘))
122121expr 640 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝑐 < 𝑘 → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 → ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘)))
123 fvex 5996 . . . . . . . . . . . . . . . . . . 19 (BaseSet‘𝑈) ∈ V
12422, 123eqeltri 2588 . . . . . . . . . . . . . . . . . 18 𝑋 ∈ V
125124rabex 4639 . . . . . . . . . . . . . . . . 17 {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ V
12693fvmpt2 6083 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ∈ V) → (𝐴𝑘) = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
127125, 126mpan2 702 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝐴𝑘) = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
128127eleq2d 2577 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑥 ∈ (𝐴𝑘) ↔ 𝑥 ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘}))
12950ralbidv 2873 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘))
130129elrab 3235 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} ↔ (𝑥𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘))
131128, 130syl6bb 274 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑥 ∈ (𝐴𝑘) ↔ (𝑥𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘)))
132 simpr 475 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → 𝑥𝑋)
133132biantrurd 527 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘 ↔ (𝑥𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘)))
134133bicomd 211 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → ((𝑥𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘) ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘))
135131, 134sylan9bbr 732 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐴𝑘) ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘))
136 ffn 5843 . . . . . . . . . . . . . . . 16 (𝐴:ℕ⟶(Clsd‘𝐽) → 𝐴 Fn ℕ)
13794, 136syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐴 Fn ℕ)
138137adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → 𝐴 Fn ℕ)
139 fnfvelrn 6147 . . . . . . . . . . . . . . . 16 ((𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ran 𝐴)
140 elssuni 4301 . . . . . . . . . . . . . . . 16 ((𝐴𝑘) ∈ ran 𝐴 → (𝐴𝑘) ⊆ ran 𝐴)
141139, 140syl 17 . . . . . . . . . . . . . . 15 ((𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ⊆ ran 𝐴)
142141sseld 3471 . . . . . . . . . . . . . 14 ((𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐴𝑘) → 𝑥 ran 𝐴))
143138, 142sylan 486 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐴𝑘) → 𝑥 ran 𝐴))
144135, 143sylbird 248 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑘 ∈ ℕ) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘𝑥 ran 𝐴))
145144adantlr 746 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑘𝑥 ran 𝐴))
146122, 145syl6d 72 . . . . . . . . . 10 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (𝑐 < 𝑘 → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐𝑥 ran 𝐴)))
147146rexlimdva 2917 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) → (∃𝑘 ∈ ℕ 𝑐 < 𝑘 → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐𝑥 ran 𝐴)))
148103, 147mpd 15 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ℝ) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐𝑥 ran 𝐴))
149148rexlimdva 2917 . . . . . . 7 ((𝜑𝑥𝑋) → (∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐𝑥 ran 𝐴))
150149ralimdva 2849 . . . . . 6 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 → ∀𝑥𝑋 𝑥 ran 𝐴))
151101, 150mpd 15 . . . . 5 (𝜑 → ∀𝑥𝑋 𝑥 ran 𝐴)
152 dfss3 3462 . . . . 5 (𝑋 ran 𝐴 ↔ ∀𝑥𝑋 𝑥 ran 𝐴)
153151, 152sylibr 222 . . . 4 (𝜑𝑋 ran 𝐴)
154100, 153eqssd 3489 . . 3 (𝜑 ran 𝐴 = 𝑋)
155 eqid 2514 . . . . . 6 (0vec𝑈) = (0vec𝑈)
15622, 155nvzcl 26632 . . . . 5 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ 𝑋)
157 ne0i 3783 . . . . 5 ((0vec𝑈) ∈ 𝑋𝑋 ≠ ∅)
15819, 156, 157mp2b 10 . . . 4 𝑋 ≠ ∅
15914bcth2 22799 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑋 ≠ ∅) ∧ (𝐴:ℕ⟶(Clsd‘𝐽) ∧ ran 𝐴 = 𝑋)) → ∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴𝑛)) ≠ ∅)
16024, 158, 159mpanl12 713 . . 3 ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ ran 𝐴 = 𝑋) → ∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴𝑛)) ≠ ∅)
16194, 154, 160syl2anc 690 . 2 (𝜑 → ∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴𝑛)) ≠ ∅)
162 ffvelrn 6148 . . . . . . . . . . 11 ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ∈ (Clsd‘𝐽))
16397, 162sseldi 3470 . . . . . . . . . 10 ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ∈ 𝒫 𝑋)
164163elpwid 4021 . . . . . . . . 9 ((𝐴:ℕ⟶(Clsd‘𝐽) ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ 𝑋)
16594, 164sylan 486 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ⊆ 𝑋)
16688ntrss3 20575 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐴𝑛) ⊆ 𝑋) → ((int‘𝐽)‘(𝐴𝑛)) ⊆ 𝑋)
16787, 165, 166sylancr 693 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴𝑛)) ⊆ 𝑋)
168167sseld 3471 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛)) → 𝑦𝑋))
16988ntropn 20564 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐴𝑛) ⊆ 𝑋) → ((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽)
17087, 165, 169sylancr 693 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽)
17114mopni2 22008 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → ∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)))
17227, 171mp3an1 1402 . . . . . . . . 9 ((((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → ∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)))
173170, 172sylan 486 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → ∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)))
174 elssuni 4301 . . . . . . . . . . . 12 (((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽 → ((int‘𝐽)‘(𝐴𝑛)) ⊆ 𝐽)
175174, 88syl6sseqr 3519 . . . . . . . . . . 11 (((int‘𝐽)‘(𝐴𝑛)) ∈ 𝐽 → ((int‘𝐽)‘(𝐴𝑛)) ⊆ 𝑋)
176170, 175syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴𝑛)) ⊆ 𝑋)
177176sselda 3472 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → 𝑦𝑋)
17888ntrss2 20572 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ (𝐴𝑛) ⊆ 𝑋) → ((int‘𝐽)‘(𝐴𝑛)) ⊆ (𝐴𝑛))
17987, 165, 178sylancr 693 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((int‘𝐽)‘(𝐴𝑛)) ⊆ (𝐴𝑛))
180 sstr2 3479 . . . . . . . . . . . . 13 ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → (((int‘𝐽)‘(𝐴𝑛)) ⊆ (𝐴𝑛) → (𝑦(ball‘𝐷)𝑥) ⊆ (𝐴𝑛)))
181179, 180syl5com 31 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → (𝑦(ball‘𝐷)𝑥) ⊆ (𝐴𝑛)))
182181ad2antrr 757 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → (𝑦(ball‘𝐷)𝑥) ⊆ (𝐴𝑛)))
183 simpr 475 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) → 𝑦𝑋)
184183, 27jctil 557 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋))
185 rphalfcl 11599 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
186185rpxrd 11614 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ*)
187 rpxr 11581 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
188 rphalflt 11601 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (𝑥 / 2) < 𝑥)
189186, 187, 1883jca 1234 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → ((𝑥 / 2) ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑥 / 2) < 𝑥))
190 eqid 2514 . . . . . . . . . . . . . 14 {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} = {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)}
19114, 190blsscls2 22019 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ ((𝑥 / 2) ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑥 / 2) < 𝑥)) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝑦(ball‘𝐷)𝑥))
192184, 189, 191syl2an 492 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝑦(ball‘𝐷)𝑥))
193 sstr2 3479 . . . . . . . . . . . 12 ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝑦(ball‘𝐷)𝑥) → ((𝑦(ball‘𝐷)𝑥) ⊆ (𝐴𝑛) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛)))
194192, 193syl 17 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑥) ⊆ (𝐴𝑛) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛)))
195185adantl 480 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
196 breq2 4485 . . . . . . . . . . . . . . . 16 (𝑟 = (𝑥 / 2) → ((𝑦𝐷𝑧) ≤ 𝑟 ↔ (𝑦𝐷𝑧) ≤ (𝑥 / 2)))
197196rabbidv 3068 . . . . . . . . . . . . . . 15 (𝑟 = (𝑥 / 2) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} = {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)})
198197sseq1d 3499 . . . . . . . . . . . . . 14 (𝑟 = (𝑥 / 2) → ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛) ↔ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛)))
199198rspcev 3186 . . . . . . . . . . . . 13 (((𝑥 / 2) ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))
200199ex 448 . . . . . . . . . . . 12 ((𝑥 / 2) ∈ ℝ+ → ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
201195, 200syl 17 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ (𝑥 / 2)} ⊆ (𝐴𝑛) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
202182, 194, 2013syld 57 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) ∧ 𝑥 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
203202rexlimdva 2917 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑋) → (∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
204177, 203syldan 485 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → (∃𝑥 ∈ ℝ+ (𝑦(ball‘𝐷)𝑥) ⊆ ((int‘𝐽)‘(𝐴𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
205173, 204mpd 15 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛))) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))
206205ex 448 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛)) → ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
207168, 206jcad 553 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛)) → (𝑦𝑋 ∧ ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))))
208207eximdv 1799 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∃𝑦 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛)) → ∃𝑦(𝑦𝑋 ∧ ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))))
209 n0 3793 . . . 4 (((int‘𝐽)‘(𝐴𝑛)) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((int‘𝐽)‘(𝐴𝑛)))
210 df-rex 2806 . . . 4 (∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛) ↔ ∃𝑦(𝑦𝑋 ∧ ∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
211208, 209, 2103imtr4g 283 . . 3 ((𝜑𝑛 ∈ ℕ) → (((int‘𝐽)‘(𝐴𝑛)) ≠ ∅ → ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
212211reximdva 2904 . 2 (𝜑 → (∃𝑛 ∈ ℕ ((int‘𝐽)‘(𝐴𝑛)) ≠ ∅ → ∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛)))
213161, 212mpd 15 1 (𝜑 → ∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wex 1694  wcel 1938  wne 2684  wral 2800  wrex 2801  {crab 2804  Vcvv 3077  wss 3444  c0 3777  𝒫 cpw 4011   cuni 4270   ciin 4354   class class class wbr 4481  cmpt 4541  ccnv 4931  ran crn 4933  cima 4935   Fn wfn 5684  wf 5685  cfv 5689  (class class class)co 6425  cr 9689  *cxr 9827   < clt 9828  cle 9829   / cdiv 10432  cn 10774  2c2 10824  +crp 11573  ∞Metcxmt 19454  Metcme 19455  ballcbl 19456  MetOpencmopn 19459  Topctop 20418  TopOnctopon 20419  Clsdccld 20531  intcnt 20532   Cn ccn 20739  CMetcms 22725  NrmCVeccnv 26580  BaseSetcba 26582  0veccn0v 26584  normCVcnmcv 26586  IndMetcims 26587   BLnOp cblo 26760  CBanccbn 26881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6722  ax-inf2 8296  ax-dc 9026  ax-cnex 9746  ax-resscn 9747  ax-1cn 9748  ax-icn 9749  ax-addcl 9750  ax-addrcl 9751  ax-mulcl 9752  ax-mulrcl 9753  ax-mulcom 9754  ax-addass 9755  ax-mulass 9756  ax-distr 9757  ax-i2m1 9758  ax-1ne0 9759  ax-1rid 9760  ax-rnegex 9761  ax-rrecex 9762  ax-cnre 9763  ax-pre-lttri 9764  ax-pre-lttrn 9765  ax-pre-ltadd 9766  ax-pre-mulgt0 9767  ax-pre-sup 9768  ax-addf 9769  ax-mulf 9770
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-iin 4356  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6833  df-1st 6933  df-2nd 6934  df-wrecs 7168  df-recs 7230  df-rdg 7268  df-1o 7322  df-er 7504  df-map 7621  df-pm 7622  df-en 7717  df-dom 7718  df-sdom 7719  df-sup 8106  df-inf 8107  df-pnf 9830  df-mnf 9831  df-xr 9832  df-ltxr 9833  df-le 9834  df-sub 10018  df-neg 10019  df-div 10433  df-nn 10775  df-2 10833  df-3 10834  df-n0 11047  df-z 11118  df-uz 11427  df-q 11530  df-rp 11574  df-xneg 11687  df-xadd 11688  df-xmul 11689  df-ico 11920  df-seq 12531  df-exp 12590  df-cj 13544  df-re 13545  df-im 13546  df-sqrt 13680  df-abs 13681  df-rest 15788  df-topgen 15809  df-psmet 19461  df-xmet 19462  df-met 19463  df-bl 19464  df-mopn 19465  df-fbas 19466  df-fg 19467  df-top 20422  df-bases 20423  df-topon 20424  df-cld 20534  df-ntr 20535  df-cls 20536  df-nei 20613  df-cn 20742  df-cnp 20743  df-lm 20744  df-fil 21361  df-fm 21453  df-flim 21454  df-flf 21455  df-cfil 22726  df-cau 22727  df-cmet 22728  df-grpo 26470  df-gid 26471  df-ginv 26472  df-gdiv 26473  df-ablo 26525  df-vc 26540  df-nv 26588  df-va 26591  df-ba 26592  df-sm 26593  df-0v 26594  df-vs 26595  df-nmcv 26596  df-ims 26597  df-lno 26762  df-nmoo 26763  df-blo 26764  df-0o 26765  df-cbn 26882
This theorem is referenced by:  ubthlem3  26891
  Copyright terms: Public domain W3C validator