Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubthlem3 Structured version   Visualization version   GIF version

Theorem ubthlem3 27574
 Description: Lemma for ubth 27575. Prove the reverse implication, using nmblolbi 27501. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubthlem.3 𝐷 = (IndMet‘𝑈)
ubthlem.4 𝐽 = (MetOpen‘𝐷)
ubthlem.5 𝑈 ∈ CBan
ubthlem.6 𝑊 ∈ NrmCVec
ubthlem.7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
Assertion
Ref Expression
ubthlem3 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
Distinct variable groups:   𝑥,𝑐,𝑡,𝐷   𝑡,𝐽,𝑥   𝑡,𝑑,𝑥,𝑐,𝑁   𝜑,𝑐,𝑡,𝑥   𝑇,𝑐,𝑑,𝑡,𝑥   𝑈,𝑐,𝑑,𝑡,𝑥   𝑊,𝑐,𝑑,𝑡,𝑥   𝑋,𝑐,𝑑,𝑡,𝑥   𝜑,𝑑
Allowed substitution hints:   𝐷(𝑑)   𝐽(𝑐,𝑑)

Proof of Theorem ubthlem3
Dummy variables 𝑘 𝑛 𝑟 𝑦 𝑧 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6147 . . . . . . . . . 10 (𝑢 = 𝑡 → (𝑢𝑧) = (𝑡𝑧))
21fveq2d 6152 . . . . . . . . 9 (𝑢 = 𝑡 → (𝑁‘(𝑢𝑧)) = (𝑁‘(𝑡𝑧)))
32breq1d 4623 . . . . . . . 8 (𝑢 = 𝑡 → ((𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑑))
43cbvralv 3159 . . . . . . 7 (∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑑)
5 breq2 4617 . . . . . . . 8 (𝑑 = 𝑐 → ((𝑁‘(𝑡𝑧)) ≤ 𝑑 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑐))
65ralbidv 2980 . . . . . . 7 (𝑑 = 𝑐 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑑 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐))
74, 6syl5bb 272 . . . . . 6 (𝑑 = 𝑐 → (∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐))
87cbvrexv 3160 . . . . 5 (∃𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐)
9 fveq2 6148 . . . . . . . 8 (𝑧 = 𝑥 → (𝑡𝑧) = (𝑡𝑥))
109fveq2d 6152 . . . . . . 7 (𝑧 = 𝑥 → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡𝑥)))
1110breq1d 4623 . . . . . 6 (𝑧 = 𝑥 → ((𝑁‘(𝑡𝑧)) ≤ 𝑐 ↔ (𝑁‘(𝑡𝑥)) ≤ 𝑐))
1211rexralbidv 3051 . . . . 5 (𝑧 = 𝑥 → (∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
138, 12syl5bb 272 . . . 4 (𝑧 = 𝑥 → (∃𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
1413cbvralv 3159 . . 3 (∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
15 ubth.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
16 ubth.2 . . . . . 6 𝑁 = (normCV𝑊)
17 ubthlem.3 . . . . . 6 𝐷 = (IndMet‘𝑈)
18 ubthlem.4 . . . . . 6 𝐽 = (MetOpen‘𝐷)
19 ubthlem.5 . . . . . 6 𝑈 ∈ CBan
20 ubthlem.6 . . . . . 6 𝑊 ∈ NrmCVec
21 ubthlem.7 . . . . . . 7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
2221adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → 𝑇 ⊆ (𝑈 BLnOp 𝑊))
23 simpr 477 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑)
2423, 14sylib 208 . . . . . 6 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
25 fveq1 6147 . . . . . . . . . . . . 13 (𝑢 = 𝑡 → (𝑢𝑑) = (𝑡𝑑))
2625fveq2d 6152 . . . . . . . . . . . 12 (𝑢 = 𝑡 → (𝑁‘(𝑢𝑑)) = (𝑁‘(𝑡𝑑)))
2726breq1d 4623 . . . . . . . . . . 11 (𝑢 = 𝑡 → ((𝑁‘(𝑢𝑑)) ≤ 𝑚 ↔ (𝑁‘(𝑡𝑑)) ≤ 𝑚))
2827cbvralv 3159 . . . . . . . . . 10 (∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑑)) ≤ 𝑚)
29 fveq2 6148 . . . . . . . . . . . . 13 (𝑑 = 𝑧 → (𝑡𝑑) = (𝑡𝑧))
3029fveq2d 6152 . . . . . . . . . . . 12 (𝑑 = 𝑧 → (𝑁‘(𝑡𝑑)) = (𝑁‘(𝑡𝑧)))
3130breq1d 4623 . . . . . . . . . . 11 (𝑑 = 𝑧 → ((𝑁‘(𝑡𝑑)) ≤ 𝑚 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑚))
3231ralbidv 2980 . . . . . . . . . 10 (𝑑 = 𝑧 → (∀𝑡𝑇 (𝑁‘(𝑡𝑑)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚))
3328, 32syl5bb 272 . . . . . . . . 9 (𝑑 = 𝑧 → (∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚))
3433cbvrabv 3185 . . . . . . . 8 {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚}
35 breq2 4617 . . . . . . . . . 10 (𝑚 = 𝑘 → ((𝑁‘(𝑡𝑧)) ≤ 𝑚 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑘))
3635ralbidv 2980 . . . . . . . . 9 (𝑚 = 𝑘 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘))
3736rabbidv 3177 . . . . . . . 8 (𝑚 = 𝑘 → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
3834, 37syl5eq 2667 . . . . . . 7 (𝑚 = 𝑘 → {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
3938cbvmptv 4710 . . . . . 6 (𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚}) = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
4015, 16, 17, 18, 19, 20, 22, 24, 39ubthlem1 27572 . . . . 5 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))
4121ad3antrrr 765 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑇 ⊆ (𝑈 BLnOp 𝑊))
4224ad2antrr 761 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
43 simplrl 799 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑛 ∈ ℕ)
44 simplrr 800 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑦𝑋)
45 simprl 793 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑟 ∈ ℝ+)
46 simprr 795 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))
4715, 16, 17, 18, 19, 20, 41, 42, 39, 43, 44, 45, 46ubthlem2 27573 . . . . . . . 8 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
4847expr 642 . . . . . . 7 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
4948rexlimdva 3024 . . . . . 6 (((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) → (∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
5049rexlimdvva 3031 . . . . 5 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → (∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
5140, 50mpd 15 . . . 4 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
5251ex 450 . . 3 (𝜑 → (∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
5314, 52syl5bir 233 . 2 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
54 simpr 477 . . . . . 6 ((𝜑𝑑 ∈ ℝ) → 𝑑 ∈ ℝ)
55 bnnv 27568 . . . . . . . 8 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
5619, 55ax-mp 5 . . . . . . 7 𝑈 ∈ NrmCVec
57 eqid 2621 . . . . . . . 8 (normCV𝑈) = (normCV𝑈)
5815, 57nvcl 27362 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → ((normCV𝑈)‘𝑥) ∈ ℝ)
5956, 58mpan 705 . . . . . 6 (𝑥𝑋 → ((normCV𝑈)‘𝑥) ∈ ℝ)
60 remulcl 9965 . . . . . 6 ((𝑑 ∈ ℝ ∧ ((normCV𝑈)‘𝑥) ∈ ℝ) → (𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ)
6154, 59, 60syl2an 494 . . . . 5 (((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) → (𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ)
6221sselda 3583 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
6362adantlr 750 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℝ) ∧ 𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
6463ad2ant2r 782 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
65 eqid 2621 . . . . . . . . . . . . 13 (BaseSet‘𝑊) = (BaseSet‘𝑊)
66 eqid 2621 . . . . . . . . . . . . 13 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
6715, 65, 66blof 27486 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 BLnOp 𝑊)) → 𝑡:𝑋⟶(BaseSet‘𝑊))
6856, 20, 67mp3an12 1411 . . . . . . . . . . 11 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡:𝑋⟶(BaseSet‘𝑊))
6964, 68syl 17 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑡:𝑋⟶(BaseSet‘𝑊))
70 simplr 791 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑥𝑋)
7169, 70ffvelrnd 6316 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
7265, 16nvcl 27362 . . . . . . . . . 10 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
7320, 72mpan 705 . . . . . . . . 9 ((𝑡𝑥) ∈ (BaseSet‘𝑊) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
7471, 73syl 17 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
75 eqid 2621 . . . . . . . . . . . . 13 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
7615, 65, 75nmoxr 27467 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡:𝑋⟶(BaseSet‘𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*)
7756, 20, 76mp3an12 1411 . . . . . . . . . . 11 (𝑡:𝑋⟶(BaseSet‘𝑊) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*)
7869, 77syl 17 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*)
79 simpllr 798 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑑 ∈ ℝ)
8015, 65, 75nmogtmnf 27471 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡:𝑋⟶(BaseSet‘𝑊)) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡))
8156, 20, 80mp3an12 1411 . . . . . . . . . . 11 (𝑡:𝑋⟶(BaseSet‘𝑊) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡))
8269, 81syl 17 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡))
83 simprr 795 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
84 xrre 11943 . . . . . . . . . 10 (((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*𝑑 ∈ ℝ) ∧ (-∞ < ((𝑈 normOpOLD 𝑊)‘𝑡) ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ)
8578, 79, 82, 83, 84syl22anc 1324 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ)
8659ad2antlr 762 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((normCV𝑈)‘𝑥) ∈ ℝ)
87 remulcl 9965 . . . . . . . . 9 ((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ ∧ ((normCV𝑈)‘𝑥) ∈ ℝ) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ∈ ℝ)
8885, 86, 87syl2anc 692 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ∈ ℝ)
8961adantr 481 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ)
9015, 57, 16, 75, 66, 56, 20nmblolbi 27501 . . . . . . . . 9 ((𝑡 ∈ (𝑈 BLnOp 𝑊) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑥)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)))
9164, 70, 90syl2anc 692 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡𝑥)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)))
9215, 57nvge0 27374 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → 0 ≤ ((normCV𝑈)‘𝑥))
9356, 92mpan 705 . . . . . . . . . . 11 (𝑥𝑋 → 0 ≤ ((normCV𝑈)‘𝑥))
9459, 93jca 554 . . . . . . . . . 10 (𝑥𝑋 → (((normCV𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤ ((normCV𝑈)‘𝑥)))
9594ad2antlr 762 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((normCV𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤ ((normCV𝑈)‘𝑥)))
96 lemul1a 10821 . . . . . . . . 9 (((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ (((normCV𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤ ((normCV𝑈)‘𝑥))) ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥)))
9785, 79, 95, 83, 96syl31anc 1326 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥)))
9874, 88, 89, 91, 97letrd 10138 . . . . . . 7 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥)))
9998expr 642 . . . . . 6 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ 𝑡𝑇) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))))
10099ralimdva 2956 . . . . 5 (((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) → (∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))))
101 breq2 4617 . . . . . . 7 (𝑐 = (𝑑 · ((normCV𝑈)‘𝑥)) → ((𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))))
102101ralbidv 2980 . . . . . 6 (𝑐 = (𝑑 · ((normCV𝑈)‘𝑥)) → (∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))))
103102rspcev 3295 . . . . 5 (((𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))) → ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
10461, 100, 103syl6an 567 . . . 4 (((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) → (∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
105104ralrimdva 2963 . . 3 ((𝜑𝑑 ∈ ℝ) → (∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
106105rexlimdva 3024 . 2 (𝜑 → (∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
10753, 106impbid 202 1 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908  {crab 2911   ⊆ wss 3555   class class class wbr 4613   ↦ cmpt 4673  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  ℝcr 9879  0cc0 9880   · cmul 9885  -∞cmnf 10016  ℝ*cxr 10017   < clt 10018   ≤ cle 10019  ℕcn 10964  ℝ+crp 11776  MetOpencmopn 19655  NrmCVeccnv 27285  BaseSetcba 27287  normCVcnmcv 27291  IndMetcims 27292   normOpOLD cnmoo 27442   BLnOp cblo 27443  CBanccbn 27564 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-dc 9212  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ico 12123  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-rest 16004  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-top 20621  df-bases 20622  df-topon 20623  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-cn 20941  df-cnp 20942  df-lm 20943  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-cfil 22961  df-cau 22962  df-cmet 22963  df-grpo 27193  df-gid 27194  df-ginv 27195  df-gdiv 27196  df-ablo 27245  df-vc 27260  df-nv 27293  df-va 27296  df-ba 27297  df-sm 27298  df-0v 27299  df-vs 27300  df-nmcv 27301  df-ims 27302  df-lno 27445  df-nmoo 27446  df-blo 27447  df-0o 27448  df-cbn 27565 This theorem is referenced by:  ubth  27575
 Copyright terms: Public domain W3C validator