MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnprima Structured version   Visualization version   GIF version

Theorem ucnprima 21996
Description: The preimage by a uniformly continuous function 𝐹 of an entourage 𝑊 of 𝑌 is an entourage of 𝑋. Note of the definition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Hypotheses
Ref Expression
ucnprima.1 (𝜑𝑈 ∈ (UnifOn‘𝑋))
ucnprima.2 (𝜑𝑉 ∈ (UnifOn‘𝑌))
ucnprima.3 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
ucnprima.4 (𝜑𝑊𝑉)
ucnprima.5 𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
Assertion
Ref Expression
ucnprima (𝜑 → (𝐺𝑊) ∈ 𝑈)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑋,𝑦   𝑥,𝐺,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉   𝑥,𝑊,𝑦   𝑥,𝑌   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑦)   𝑌(𝑦)

Proof of Theorem ucnprima
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ucnprima.1 . . . 4 (𝜑𝑈 ∈ (UnifOn‘𝑋))
2 ucnprima.2 . . . 4 (𝜑𝑉 ∈ (UnifOn‘𝑌))
3 ucnprima.3 . . . 4 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
4 ucnprima.4 . . . 4 (𝜑𝑊𝑉)
5 ucnprima.5 . . . 4 𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
61, 2, 3, 4, 5ucnima 21995 . . 3 (𝜑 → ∃𝑟𝑈 (𝐺𝑟) ⊆ 𝑊)
75mpt2fun 6715 . . . . 5 Fun 𝐺
8 ustssxp 21918 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟𝑈) → 𝑟 ⊆ (𝑋 × 𝑋))
91, 8sylan 488 . . . . . 6 ((𝜑𝑟𝑈) → 𝑟 ⊆ (𝑋 × 𝑋))
10 opex 4893 . . . . . . 7 ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ V
115, 10dmmpt2 7185 . . . . . 6 dom 𝐺 = (𝑋 × 𝑋)
129, 11syl6sseqr 3631 . . . . 5 ((𝜑𝑟𝑈) → 𝑟 ⊆ dom 𝐺)
13 funimass3 6289 . . . . 5 ((Fun 𝐺𝑟 ⊆ dom 𝐺) → ((𝐺𝑟) ⊆ 𝑊𝑟 ⊆ (𝐺𝑊)))
147, 12, 13sylancr 694 . . . 4 ((𝜑𝑟𝑈) → ((𝐺𝑟) ⊆ 𝑊𝑟 ⊆ (𝐺𝑊)))
1514rexbidva 3042 . . 3 (𝜑 → (∃𝑟𝑈 (𝐺𝑟) ⊆ 𝑊 ↔ ∃𝑟𝑈 𝑟 ⊆ (𝐺𝑊)))
166, 15mpbid 222 . 2 (𝜑 → ∃𝑟𝑈 𝑟 ⊆ (𝐺𝑊))
171adantr 481 . . . 4 ((𝜑𝑟𝑈) → 𝑈 ∈ (UnifOn‘𝑋))
18 simpr 477 . . . 4 ((𝜑𝑟𝑈) → 𝑟𝑈)
19 cnvimass 5444 . . . . . 6 (𝐺𝑊) ⊆ dom 𝐺
2019, 11sseqtri 3616 . . . . 5 (𝐺𝑊) ⊆ (𝑋 × 𝑋)
2120a1i 11 . . . 4 ((𝜑𝑟𝑈) → (𝐺𝑊) ⊆ (𝑋 × 𝑋))
22 ustssel 21919 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟𝑈 ∧ (𝐺𝑊) ⊆ (𝑋 × 𝑋)) → (𝑟 ⊆ (𝐺𝑊) → (𝐺𝑊) ∈ 𝑈))
2317, 18, 21, 22syl3anc 1323 . . 3 ((𝜑𝑟𝑈) → (𝑟 ⊆ (𝐺𝑊) → (𝐺𝑊) ∈ 𝑈))
2423rexlimdva 3024 . 2 (𝜑 → (∃𝑟𝑈 𝑟 ⊆ (𝐺𝑊) → (𝐺𝑊) ∈ 𝑈))
2516, 24mpd 15 1 (𝜑 → (𝐺𝑊) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wrex 2908  wss 3555  cop 4154   × cxp 5072  ccnv 5073  dom cdm 5074  cima 5077  Fun wfun 5841  cfv 5847  (class class class)co 6604  cmpt2 6606  UnifOncust 21913   Cnucucn 21989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-map 7804  df-ust 21914  df-ucn 21990
This theorem is referenced by:  fmucnd  22006
  Copyright terms: Public domain W3C validator