MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffixfr Structured version   Visualization version   GIF version

Theorem uffixfr 22533
Description: An ultrafilter is either fixed or free. A fixed ultrafilter is called principal (generated by a single element 𝐴), and a free ultrafilter is called nonprincipal (having empty intersection). Note that examples of free ultrafilters cannot be defined in ZFC without some form of global choice. (Contributed by Jeff Hankins, 4-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffixfr (𝐹 ∈ (UFil‘𝑋) → (𝐴 𝐹𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑋

Proof of Theorem uffixfr
StepHypRef Expression
1 simpl 485 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 ∈ (UFil‘𝑋))
2 ufilfil 22514 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
3 filtop 22465 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
42, 3syl 17 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → 𝑋𝐹)
5 filn0 22472 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
6 intssuni 4900 . . . . . . . . 9 (𝐹 ≠ ∅ → 𝐹 𝐹)
72, 5, 63syl 18 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 𝐹)
8 filunibas 22491 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
92, 8syl 17 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
107, 9sseqtrd 4009 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹𝑋)
1110sselda 3969 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐴𝑋)
12 uffix 22531 . . . . . 6 ((𝑋𝐹𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
134, 11, 12syl2an2r 683 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
1413simprd 498 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}}))
1513simpld 497 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {{𝐴}} ∈ (fBas‘𝑋))
16 fgcl 22488 . . . . 5 ({{𝐴}} ∈ (fBas‘𝑋) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋))
1715, 16syl 17 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋))
1814, 17eqeltrd 2915 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (Fil‘𝑋))
192adantr 483 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 ∈ (Fil‘𝑋))
20 filsspw 22461 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
2119, 20syl 17 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 ⊆ 𝒫 𝑋)
22 elintg 4886 . . . . . 6 (𝐴 𝐹 → (𝐴 𝐹 ↔ ∀𝑥𝐹 𝐴𝑥))
2322ibi 269 . . . . 5 (𝐴 𝐹 → ∀𝑥𝐹 𝐴𝑥)
2423adantl 484 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → ∀𝑥𝐹 𝐴𝑥)
25 ssrab 4051 . . . 4 (𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ ∀𝑥𝐹 𝐴𝑥))
2621, 24, 25sylanbrc 585 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
27 ufilmax 22517 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
281, 18, 26, 27syl3anc 1367 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
29 eqimss 4025 . . . . 5 (𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥} → 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
3029adantl 484 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → 𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
3125simprbi 499 . . . 4 (𝐹 ⊆ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} → ∀𝑥𝐹 𝐴𝑥)
3230, 31syl 17 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → ∀𝑥𝐹 𝐴𝑥)
33 eleq2 2903 . . . . . 6 (𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥} → (𝑋𝐹𝑋 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
3433biimpac 481 . . . . 5 ((𝑋𝐹𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → 𝑋 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
354, 34sylan 582 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → 𝑋 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
36 eleq2 2903 . . . . . 6 (𝑥 = 𝑋 → (𝐴𝑥𝐴𝑋))
3736elrab 3682 . . . . 5 (𝑋 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑋 ∈ 𝒫 𝑋𝐴𝑋))
3837simprbi 499 . . . 4 (𝑋 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} → 𝐴𝑋)
39 elintg 4886 . . . 4 (𝐴𝑋 → (𝐴 𝐹 ↔ ∀𝑥𝐹 𝐴𝑥))
4035, 38, 393syl 18 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → (𝐴 𝐹 ↔ ∀𝑥𝐹 𝐴𝑥))
4132, 40mpbird 259 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) → 𝐴 𝐹)
4228, 41impbida 799 1 (𝐹 ∈ (UFil‘𝑋) → (𝐴 𝐹𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  {crab 3144  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   cuni 4840   cint 4878  cfv 6357  (class class class)co 7158  fBascfbas 20535  filGencfg 20536  Filcfil 22455  UFilcufil 22509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-int 4879  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-fbas 20544  df-fg 20545  df-fil 22456  df-ufil 22511
This theorem is referenced by:  uffix2  22534  uffixsn  22535
  Copyright terms: Public domain W3C validator