MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr0 Structured version   Visualization version   GIF version

Theorem uhgr0 26861
Description: The null graph represented by an empty set is a hypergraph. (Contributed by AV, 9-Oct-2020.)
Assertion
Ref Expression
uhgr0 ∅ ∈ UHGraph

Proof of Theorem uhgr0
StepHypRef Expression
1 f0 6563 . . 3 ∅:∅⟶∅
2 dm0 5793 . . . 4 dom ∅ = ∅
3 pw0 4748 . . . . . 6 𝒫 ∅ = {∅}
43difeq1i 4098 . . . . 5 (𝒫 ∅ ∖ {∅}) = ({∅} ∖ {∅})
5 difid 4333 . . . . 5 ({∅} ∖ {∅}) = ∅
64, 5eqtri 2847 . . . 4 (𝒫 ∅ ∖ {∅}) = ∅
72, 6feq23i 6511 . . 3 (∅:dom ∅⟶(𝒫 ∅ ∖ {∅}) ↔ ∅:∅⟶∅)
81, 7mpbir 233 . 2 ∅:dom ∅⟶(𝒫 ∅ ∖ {∅})
9 0ex 5214 . . 3 ∅ ∈ V
10 vtxval0 26827 . . . . 5 (Vtx‘∅) = ∅
1110eqcomi 2833 . . . 4 ∅ = (Vtx‘∅)
12 iedgval0 26828 . . . . 5 (iEdg‘∅) = ∅
1312eqcomi 2833 . . . 4 ∅ = (iEdg‘∅)
1411, 13isuhgr 26848 . . 3 (∅ ∈ V → (∅ ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 ∅ ∖ {∅})))
159, 14ax-mp 5 . 2 (∅ ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 ∅ ∖ {∅}))
168, 15mpbir 233 1 ∅ ∈ UHGraph
Colors of variables: wff setvar class
Syntax hints:  wb 208  wcel 2113  Vcvv 3497  cdif 3936  c0 4294  𝒫 cpw 4542  {csn 4570  dom cdm 5558  wf 6354  cfv 6358  Vtxcvtx 26784  iEdgciedg 26785  UHGraphcuhgr 26844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-slot 16490  df-base 16492  df-edgf 26778  df-vtx 26786  df-iedg 26787  df-uhgr 26846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator