![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgr0e | Structured version Visualization version GIF version |
Description: The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
uhgr0e.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
uhgr0e.e | ⊢ (𝜑 → (iEdg‘𝐺) = ∅) |
Ref | Expression |
---|---|
uhgr0e | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 6199 | . . 3 ⊢ ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) | |
2 | dm0 5446 | . . . 4 ⊢ dom ∅ = ∅ | |
3 | 2 | feq2i 6150 | . . 3 ⊢ (∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | 1, 3 | mpbir 221 | . 2 ⊢ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) |
5 | uhgr0e.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
6 | eqid 2724 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
7 | eqid 2724 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
8 | 6, 7 | isuhgr 26075 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
9 | 5, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
10 | uhgr0e.e | . . . 4 ⊢ (𝜑 → (iEdg‘𝐺) = ∅) | |
11 | id 22 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → (iEdg‘𝐺) = ∅) | |
12 | dmeq 5431 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = dom ∅) | |
13 | 11, 12 | feq12d 6146 | . . . 4 ⊢ ((iEdg‘𝐺) = ∅ → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
14 | 10, 13 | syl 17 | . . 3 ⊢ (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
15 | 9, 14 | bitrd 268 | . 2 ⊢ (𝜑 → (𝐺 ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
16 | 4, 15 | mpbiri 248 | 1 ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1596 ∈ wcel 2103 ∖ cdif 3677 ∅c0 4023 𝒫 cpw 4266 {csn 4285 dom cdm 5218 ⟶wf 5997 ‘cfv 6001 Vtxcvtx 25994 iEdgciedg 25995 UHGraphcuhgr 26071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-fv 6009 df-uhgr 26073 |
This theorem is referenced by: uhgr0vb 26087 |
Copyright terms: Public domain | W3C validator |