MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr0vb Structured version   Visualization version   GIF version

Theorem uhgr0vb 26784
Description: The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.)
Assertion
Ref Expression
uhgr0vb ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅))

Proof of Theorem uhgr0vb
StepHypRef Expression
1 eqid 2818 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2818 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2uhgrf 26774 . . 3 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
4 pweq 4538 . . . . . . . 8 ((Vtx‘𝐺) = ∅ → 𝒫 (Vtx‘𝐺) = 𝒫 ∅)
54difeq1d 4095 . . . . . . 7 ((Vtx‘𝐺) = ∅ → (𝒫 (Vtx‘𝐺) ∖ {∅}) = (𝒫 ∅ ∖ {∅}))
6 pw0 4737 . . . . . . . . 9 𝒫 ∅ = {∅}
76difeq1i 4092 . . . . . . . 8 (𝒫 ∅ ∖ {∅}) = ({∅} ∖ {∅})
8 difid 4327 . . . . . . . 8 ({∅} ∖ {∅}) = ∅
97, 8eqtri 2841 . . . . . . 7 (𝒫 ∅ ∖ {∅}) = ∅
105, 9syl6eq 2869 . . . . . 6 ((Vtx‘𝐺) = ∅ → (𝒫 (Vtx‘𝐺) ∖ {∅}) = ∅)
1110adantl 482 . . . . 5 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝒫 (Vtx‘𝐺) ∖ {∅}) = ∅)
1211feq3d 6494 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅))
13 f00 6554 . . . . 5 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ ↔ ((iEdg‘𝐺) = ∅ ∧ dom (iEdg‘𝐺) = ∅))
1413simplbi 498 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ → (iEdg‘𝐺) = ∅)
1512, 14syl6bi 254 . . 3 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) → (iEdg‘𝐺) = ∅))
163, 15syl5 34 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))
17 simpl 483 . . . . 5 ((𝐺𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺𝑊)
18 simpr 485 . . . . 5 ((𝐺𝑊 ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅)
1917, 18uhgr0e 26783 . . . 4 ((𝐺𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ UHGraph)
2019ex 413 . . 3 (𝐺𝑊 → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ UHGraph))
2120adantr 481 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ UHGraph))
2216, 21impbid 213 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  cdif 3930  c0 4288  𝒫 cpw 4535  {csn 4557  dom cdm 5548  wf 6344  cfv 6348  Vtxcvtx 26708  iEdgciedg 26709  UHGraphcuhgr 26768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-uhgr 26770
This theorem is referenced by:  usgr0vb  26946  uhgr0v0e  26947  0uhgrsubgr  26988  finsumvtxdg2size  27259  0uhgrrusgr  27287  frgr0v  27968  frgruhgr0v  27970
  Copyright terms: Public domain W3C validator