Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uhgr1wlkspth Structured version   Visualization version   GIF version

Theorem uhgr1wlkspth 40963
Description: Any walk of length 1 between two different vertices is a simple path. (Contributed by AV, 25-Jan-2021.)
Hypotheses
Ref Expression
uhgr1wlkspth.v 𝑉 = (Vtx‘𝐺)
uhgr1wlkspth.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgr1wlkspth ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))

Proof of Theorem uhgr1wlkspth
StepHypRef Expression
1 eqid 2609 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
21wlkOnprop 40868 . . . . 5 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
3 3simpc 1052 . . . . . 6 ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
433anim1i 1240 . . . . 5 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
52, 4syl 17 . . . 4 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
6 simpl31 1134 . . . . . . . . 9 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → 𝐹(1Walks‘𝐺)𝑃)
7 uhgr1wlkspthlem1 40961 . . . . . . . . . . . . . . 15 ((𝐹(1Walks‘𝐺)𝑃 ∧ (#‘𝐹) = 1) → Fun 𝐹)
87expcom 449 . . . . . . . . . . . . . 14 ((#‘𝐹) = 1 → (𝐹(1Walks‘𝐺)𝑃 → Fun 𝐹))
983ad2ant2 1075 . . . . . . . . . . . . 13 ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → (𝐹(1Walks‘𝐺)𝑃 → Fun 𝐹))
109com12 32 . . . . . . . . . . . 12 (𝐹(1Walks‘𝐺)𝑃 → ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → Fun 𝐹))
11103ad2ant1 1074 . . . . . . . . . . 11 ((𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → Fun 𝐹))
12113ad2ant3 1076 . . . . . . . . . 10 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → Fun 𝐹))
1312imp 443 . . . . . . . . 9 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → Fun 𝐹)
1411vgrex 40237 . . . . . . . . . . . . . . 15 (𝐴 ∈ (Vtx‘𝐺) → 𝐺 ∈ V)
1514adantr 479 . . . . . . . . . . . . . 14 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → 𝐺 ∈ V)
1615anim1i 589 . . . . . . . . . . . . 13 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
17 3anass 1034 . . . . . . . . . . . . 13 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ↔ (𝐺 ∈ V ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
1816, 17sylibr 222 . . . . . . . . . . . 12 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
19 isTrl 40906 . . . . . . . . . . . 12 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(TrailS‘𝐺)𝑃 ↔ (𝐹(1Walks‘𝐺)𝑃 ∧ Fun 𝐹)))
2018, 19syl 17 . . . . . . . . . . 11 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(TrailS‘𝐺)𝑃 ↔ (𝐹(1Walks‘𝐺)𝑃 ∧ Fun 𝐹)))
21203adant3 1073 . . . . . . . . . 10 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (𝐹(TrailS‘𝐺)𝑃 ↔ (𝐹(1Walks‘𝐺)𝑃 ∧ Fun 𝐹)))
2221adantr 479 . . . . . . . . 9 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → (𝐹(TrailS‘𝐺)𝑃 ↔ (𝐹(1Walks‘𝐺)𝑃 ∧ Fun 𝐹)))
236, 13, 22mpbir2and 958 . . . . . . . 8 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → 𝐹(TrailS‘𝐺)𝑃)
24 3simpc 1052 . . . . . . . . . 10 ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → ((#‘𝐹) = 1 ∧ 𝐴𝐵))
2524adantl 480 . . . . . . . . 9 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → ((#‘𝐹) = 1 ∧ 𝐴𝐵))
26 3simpc 1052 . . . . . . . . . . 11 ((𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))
27263ad2ant3 1076 . . . . . . . . . 10 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))
2827adantr 479 . . . . . . . . 9 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))
29 uhgr1wlkspthlem2 40962 . . . . . . . . 9 ((𝐹(1Walks‘𝐺)𝑃 ∧ ((#‘𝐹) = 1 ∧ 𝐴𝐵) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → Fun 𝑃)
306, 25, 28, 29syl3anc 1317 . . . . . . . 8 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → Fun 𝑃)
31 wlkv 40817 . . . . . . . . . . . 12 (𝐹(1Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
32313ad2ant1 1074 . . . . . . . . . . 11 ((𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
33323ad2ant3 1076 . . . . . . . . . 10 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
34 issPth 40932 . . . . . . . . . 10 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(SPathS‘𝐺)𝑃 ↔ (𝐹(TrailS‘𝐺)𝑃 ∧ Fun 𝑃)))
3533, 34syl 17 . . . . . . . . 9 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (𝐹(SPathS‘𝐺)𝑃 ↔ (𝐹(TrailS‘𝐺)𝑃 ∧ Fun 𝑃)))
3635adantr 479 . . . . . . . 8 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → (𝐹(SPathS‘𝐺)𝑃 ↔ (𝐹(TrailS‘𝐺)𝑃 ∧ Fun 𝑃)))
3723, 30, 36mpbir2and 958 . . . . . . 7 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → 𝐹(SPathS‘𝐺)𝑃)
38 3anass 1034 . . . . . . 7 ((𝐹(SPathS‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ↔ (𝐹(SPathS‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
3937, 28, 38sylanbrc 694 . . . . . 6 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → (𝐹(SPathS‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))
40 3simpa 1050 . . . . . . . 8 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
4140adantr 479 . . . . . . 7 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
421isspthonpth-av 40957 . . . . . . 7 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPathS‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
4341, 42syl 17 . . . . . 6 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPathS‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
4439, 43mpbird 245 . . . . 5 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ (𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵)) → 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃)
4544ex 448 . . . 4 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(1Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))
465, 45syl 17 . . 3 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))
4746com12 32 . 2 ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))
48 spthonpthon 40959 . . 3 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃)
49 pthontrlon 40955 . . 3 (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃)
50 trlsonwlkon 40919 . . 3 (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃)
5148, 49, 503syl 18 . 2 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃)
5247, 51impbid1 213 1 ((𝐺𝑊 ∧ (#‘𝐹) = 1 ∧ 𝐴𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  Vcvv 3172   class class class wbr 4577  ccnv 5027  Fun wfun 5784  cfv 5790  (class class class)co 6527  0cc0 9792  1c1 9793  #chash 12934  Vtxcvtx 40231  Edgcedga 40353  1Walksc1wlks 40798  WalksOncwlkson 40800  TrailSctrls 40901  TrailsOnctrlson 40902  SPathScspths 40922  PathsOncpthson 40923  SPathsOncspthson 40924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-ifp 1006  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290  df-hash 12935  df-word 13100  df-concat 13102  df-s1 13103  df-s2 13390  df-1wlks 40802  df-wlkson 40804  df-trls 40903  df-trlson 40904  df-pths 40925  df-spths 40926  df-pthson 40927  df-spthson 40928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator