Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uhgr1wlkspthlem2 Structured version   Visualization version   GIF version

Theorem uhgr1wlkspthlem2 40962
Description: Lemma 2 for uhgr1wlkspth 40963. (Contributed by AV, 25-Jan-2021.)
Assertion
Ref Expression
uhgr1wlkspthlem2 ((𝐹(1Walks‘𝐺)𝑃 ∧ ((#‘𝐹) = 1 ∧ 𝐴𝐵) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → Fun 𝑃)

Proof of Theorem uhgr1wlkspthlem2
StepHypRef Expression
1 eqid 2609 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
211wlkp 40823 . . 3 (𝐹(1Walks‘𝐺)𝑃𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺))
3 oveq2 6535 . . . . . . . . . . . . 13 ((#‘𝐹) = 1 → (0...(#‘𝐹)) = (0...1))
4 1e0p1 11384 . . . . . . . . . . . . . . 15 1 = (0 + 1)
54oveq2i 6538 . . . . . . . . . . . . . 14 (0...1) = (0...(0 + 1))
6 0z 11221 . . . . . . . . . . . . . . 15 0 ∈ ℤ
7 fzpr 12221 . . . . . . . . . . . . . . 15 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
86, 7ax-mp 5 . . . . . . . . . . . . . 14 (0...(0 + 1)) = {0, (0 + 1)}
9 0p1e1 10979 . . . . . . . . . . . . . . 15 (0 + 1) = 1
109preq2i 4215 . . . . . . . . . . . . . 14 {0, (0 + 1)} = {0, 1}
115, 8, 103eqtri 2635 . . . . . . . . . . . . 13 (0...1) = {0, 1}
123, 11syl6eq 2659 . . . . . . . . . . . 12 ((#‘𝐹) = 1 → (0...(#‘𝐹)) = {0, 1})
1312feq2d 5930 . . . . . . . . . . 11 ((#‘𝐹) = 1 → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:{0, 1}⟶(Vtx‘𝐺)))
1413adantr 479 . . . . . . . . . 10 (((#‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:{0, 1}⟶(Vtx‘𝐺)))
15 simpl 471 . . . . . . . . . . . . 13 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (𝑃‘0) = 𝐴)
16 simpr 475 . . . . . . . . . . . . 13 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (𝑃‘(#‘𝐹)) = 𝐵)
1715, 16neeq12d 2842 . . . . . . . . . . . 12 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘(#‘𝐹)) ↔ 𝐴𝐵))
1817bicomd 211 . . . . . . . . . . 11 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘(#‘𝐹))))
19 fveq2 6088 . . . . . . . . . . . 12 ((#‘𝐹) = 1 → (𝑃‘(#‘𝐹)) = (𝑃‘1))
2019neeq2d 2841 . . . . . . . . . . 11 ((#‘𝐹) = 1 → ((𝑃‘0) ≠ (𝑃‘(#‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
2118, 20sylan9bbr 732 . . . . . . . . . 10 (((#‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1)))
2214, 21anbi12d 742 . . . . . . . . 9 (((#‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐴𝐵) ↔ (𝑃:{0, 1}⟶(Vtx‘𝐺) ∧ (𝑃‘0) ≠ (𝑃‘1))))
23 1z 11240 . . . . . . . . . . . 12 1 ∈ ℤ
24 fpr2g 6358 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃:{0, 1}⟶(Vtx‘𝐺) ↔ ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩})))
256, 23, 24mp2an 703 . . . . . . . . . . 11 (𝑃:{0, 1}⟶(Vtx‘𝐺) ↔ ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩}))
26 funcnvs2 13454 . . . . . . . . . . . . . . . . 17 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ (𝑃‘0) ≠ (𝑃‘1)) → Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩)
27263expa 1256 . . . . . . . . . . . . . . . 16 ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1)) → Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩)
2827adantl 480 . . . . . . . . . . . . . . 15 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩)
29 simpl 471 . . . . . . . . . . . . . . . . . 18 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩})
30 s2prop 13448 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) → ⟨“(𝑃‘0)(𝑃‘1)”⟩ = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩})
3130eqcomd 2615 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) → {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3231adantr 479 . . . . . . . . . . . . . . . . . . 19 ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1)) → {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3332adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3429, 33eqtrd 2643 . . . . . . . . . . . . . . . . 17 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → 𝑃 = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3534cnveqd 5208 . . . . . . . . . . . . . . . 16 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → 𝑃 = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3635funeqd 5811 . . . . . . . . . . . . . . 15 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → (Fun 𝑃 ↔ Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩))
3728, 36mpbird 245 . . . . . . . . . . . . . 14 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → Fun 𝑃)
3837exp32 628 . . . . . . . . . . . . 13 (𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} → (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃)))
3938impcom 444 . . . . . . . . . . . 12 ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩}) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃))
40393impa 1250 . . . . . . . . . . 11 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩}) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃))
4125, 40sylbi 205 . . . . . . . . . 10 (𝑃:{0, 1}⟶(Vtx‘𝐺) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃))
4241imp 443 . . . . . . . . 9 ((𝑃:{0, 1}⟶(Vtx‘𝐺) ∧ (𝑃‘0) ≠ (𝑃‘1)) → Fun 𝑃)
4322, 42syl6bi 241 . . . . . . . 8 (((#‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐴𝐵) → Fun 𝑃))
4443expd 450 . . . . . . 7 (((#‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (𝐴𝐵 → Fun 𝑃)))
4544com12 32 . . . . . 6 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (((#‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (𝐴𝐵 → Fun 𝑃)))
4645expd 450 . . . . 5 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → ((#‘𝐹) = 1 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (𝐴𝐵 → Fun 𝑃))))
4746com34 88 . . . 4 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → ((#‘𝐹) = 1 → (𝐴𝐵 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → Fun 𝑃))))
4847impd 445 . . 3 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (((#‘𝐹) = 1 ∧ 𝐴𝐵) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → Fun 𝑃)))
492, 48syl 17 . 2 (𝐹(1Walks‘𝐺)𝑃 → (((#‘𝐹) = 1 ∧ 𝐴𝐵) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → Fun 𝑃)))
50493imp 1248 1 ((𝐹(1Walks‘𝐺)𝑃 ∧ ((#‘𝐹) = 1 ∧ 𝐴𝐵) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → Fun 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  {cpr 4126  cop 4130   class class class wbr 4577  ccnv 5027  Fun wfun 5784  wf 5786  cfv 5790  (class class class)co 6527  0cc0 9792  1c1 9793   + caddc 9795  cz 11210  ...cfz 12152  #chash 12934  ⟨“cs2 13383  Vtxcvtx 40231  1Walksc1wlks 40798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-ifp 1006  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290  df-hash 12935  df-word 13100  df-concat 13102  df-s1 13103  df-s2 13390  df-1wlks 40802
This theorem is referenced by:  uhgr1wlkspth  40963
  Copyright terms: Public domain W3C validator