Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr3cyclex Structured version   Visualization version   GIF version

Theorem uhgr3cyclex 27332
 Description: If there are three different vertices in a hypergraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 12-Feb-2021.)
Hypotheses
Ref Expression
uhgr3cyclex.v 𝑉 = (Vtx‘𝐺)
uhgr3cyclex.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgr3cyclex ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem uhgr3cyclex
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uhgr3cyclex.e . . . . . . 7 𝐸 = (Edg‘𝐺)
21eleq2i 2829 . . . . . 6 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺))
3 eqid 2758 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
43uhgredgiedgb 26218 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))
52, 4syl5bb 272 . . . . 5 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))
61eleq2i 2829 . . . . . 6 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ (Edg‘𝐺))
73uhgredgiedgb 26218 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)))
86, 7syl5bb 272 . . . . 5 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)))
91eleq2i 2829 . . . . . 6 ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐶, 𝐴} ∈ (Edg‘𝐺))
103uhgredgiedgb 26218 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐶, 𝐴} ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)))
119, 10syl5bb 272 . . . . 5 (𝐺 ∈ UHGraph → ({𝐶, 𝐴} ∈ 𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)))
125, 8, 113anbi123d 1546 . . . 4 (𝐺 ∈ UHGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))))
1312adantr 472 . . 3 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))))
14 eqid 2758 . . . . . . . . . . . . . 14 ⟨“𝐴𝐵𝐶𝐴”⟩ = ⟨“𝐴𝐵𝐶𝐴”⟩
15 eqid 2758 . . . . . . . . . . . . . 14 ⟨“𝑖𝑗𝑘”⟩ = ⟨“𝑖𝑗𝑘”⟩
16 3simpa 1143 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐵𝑉))
17 pm3.22 464 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐶𝑉) → (𝐶𝑉𝐴𝑉))
18173adant2 1126 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐶𝑉𝐴𝑉))
1916, 18jca 555 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐴𝑉)))
2019adantr 472 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐴𝑉)))
2120ad2antlr 765 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐴𝑉)))
22 3simpa 1143 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐴𝐶))
23 necom 2983 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵𝐵𝐴)
2423biimpi 206 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐵𝐵𝐴)
2524anim1i 593 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵𝐵𝐶) → (𝐵𝐴𝐵𝐶))
2625ancomd 466 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵𝐵𝐶) → (𝐵𝐶𝐵𝐴))
27263adant2 1126 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐵𝐶𝐵𝐴))
28 necom 2983 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐶𝐶𝐴)
2928biimpi 206 . . . . . . . . . . . . . . . . . 18 (𝐴𝐶𝐶𝐴)
30293ad2ant2 1129 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐶𝐴)
3122, 27, 303jca 1123 . . . . . . . . . . . . . . . 16 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐴) ∧ 𝐶𝐴))
3231adantl 473 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐴) ∧ 𝐶𝐴))
3332ad2antlr 765 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐴) ∧ 𝐶𝐴))
34 eqimss 3796 . . . . . . . . . . . . . . . . . 18 ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
3534adantl 473 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
36353ad2ant3 1130 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
37 eqimss 3796 . . . . . . . . . . . . . . . . . 18 ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
3837adantl 473 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
39383ad2ant1 1128 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
40 eqimss 3796 . . . . . . . . . . . . . . . . . 18 ({𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘))
4140adantl 473 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘))
42413ad2ant2 1129 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘))
4336, 39, 423jca 1123 . . . . . . . . . . . . . . 15 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘)))
4443adantl 473 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘)))
45 uhgr3cyclex.v . . . . . . . . . . . . . 14 𝑉 = (Vtx‘𝐺)
46 simp3 1133 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐶𝑉)
47 simp1 1131 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴𝑉)
4846, 47jca 555 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐶𝑉𝐴𝑉))
4948, 30anim12i 591 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐶𝑉𝐴𝑉) ∧ 𝐶𝐴))
5049adantl 473 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ((𝐶𝑉𝐴𝑉) ∧ 𝐶𝐴))
51 pm3.22 464 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗))))
52513adant2 1126 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗))))
5345, 1, 3uhgr3cyclexlem 27331 . . . . . . . . . . . . . . . 16 ((((𝐶𝑉𝐴𝑉) ∧ 𝐶𝐴) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)))) → 𝑖𝑗)
5450, 52, 53syl2an 495 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑖𝑗)
55 3simpc 1147 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐵𝑉𝐶𝑉))
56 simp3 1133 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐵𝐶)
5755, 56anim12i 591 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶))
5857adantl 473 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶))
59 3simpc 1147 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))))
6045, 1, 3uhgr3cyclexlem 27331 . . . . . . . . . . . . . . . . 17 ((((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶) ∧ ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑘𝑖)
6160necomd 2985 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶) ∧ ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑖𝑘)
6258, 59, 61syl2an 495 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑖𝑘)
6345, 1, 3uhgr3cyclexlem 27331 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)))) → 𝑗𝑘)
6463exp31 631 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴𝑉𝐵𝑉) → (𝐴𝐵 → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
65643adant3 1127 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝐵 → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
6665com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵 → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
67663ad2ant1 1128 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
6867impcom 445 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘))
6968adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘))
7069com12 32 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → 𝑗𝑘))
71703adant3 1127 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → 𝑗𝑘))
7271impcom 445 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑗𝑘)
7354, 62, 723jca 1123 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → (𝑖𝑗𝑖𝑘𝑗𝑘))
74 eqidd 2759 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝐴 = 𝐴)
7514, 15, 21, 33, 44, 45, 3, 73, 743cyclpd 27329 . . . . . . . . . . . . 13 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → (⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩ ∧ (♯‘⟨“𝑖𝑗𝑘”⟩) = 3 ∧ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴))
76 s3cli 13824 . . . . . . . . . . . . . . 15 ⟨“𝑖𝑗𝑘”⟩ ∈ Word V
7776elexi 3351 . . . . . . . . . . . . . 14 ⟨“𝑖𝑗𝑘”⟩ ∈ V
78 s4cli 13825 . . . . . . . . . . . . . . 15 ⟨“𝐴𝐵𝐶𝐴”⟩ ∈ Word V
7978elexi 3351 . . . . . . . . . . . . . 14 ⟨“𝐴𝐵𝐶𝐴”⟩ ∈ V
80 breq12 4807 . . . . . . . . . . . . . . 15 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → (𝑓(Cycles‘𝐺)𝑝 ↔ ⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩))
81 fveq2 6350 . . . . . . . . . . . . . . . . 17 (𝑓 = ⟨“𝑖𝑗𝑘”⟩ → (♯‘𝑓) = (♯‘⟨“𝑖𝑗𝑘”⟩))
8281eqeq1d 2760 . . . . . . . . . . . . . . . 16 (𝑓 = ⟨“𝑖𝑗𝑘”⟩ → ((♯‘𝑓) = 3 ↔ (♯‘⟨“𝑖𝑗𝑘”⟩) = 3))
8382adantr 472 . . . . . . . . . . . . . . 15 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → ((♯‘𝑓) = 3 ↔ (♯‘⟨“𝑖𝑗𝑘”⟩) = 3))
84 fveq1 6349 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩ → (𝑝‘0) = (⟨“𝐴𝐵𝐶𝐴”⟩‘0))
8584eqeq1d 2760 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩ → ((𝑝‘0) = 𝐴 ↔ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴))
8685adantl 473 . . . . . . . . . . . . . . 15 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → ((𝑝‘0) = 𝐴 ↔ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴))
8780, 83, 863anbi123d 1546 . . . . . . . . . . . . . 14 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴) ↔ (⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩ ∧ (♯‘⟨“𝑖𝑗𝑘”⟩) = 3 ∧ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴)))
8877, 79, 87spc2ev 3439 . . . . . . . . . . . . 13 ((⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩ ∧ (♯‘⟨“𝑖𝑗𝑘”⟩) = 3 ∧ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
8975, 88syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
9089expcom 450 . . . . . . . . . . 11 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
91903exp 1113 . . . . . . . . . 10 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) → ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9291rexlimiva 3164 . . . . . . . . 9 (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9392com12 32 . . . . . . . 8 ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9493rexlimiva 3164 . . . . . . 7 (∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9594com13 88 . . . . . 6 ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → (∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9695rexlimiva 3164 . . . . 5 (∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → (∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
97963imp 1102 . . . 4 ((∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
9897com12 32 . . 3 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ((∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
9913, 98sylbid 230 . 2 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
100993impia 1110 1 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1630  ∃wex 1851   ∈ wcel 2137   ≠ wne 2930  ∃wrex 3049  Vcvv 3338   ⊆ wss 3713  {cpr 4321   class class class wbr 4802  dom cdm 5264  ‘cfv 6047  0cc0 10126  3c3 11261  ♯chash 13309  Word cword 13475  ⟨“cs3 13785  ⟨“cs4 13786  Vtxcvtx 26071  iEdgciedg 26072  Edgcedg 26136  UHGraphcuhgr 26148  Cyclesccycls 26889 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-map 8023  df-pm 8024  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-card 8953  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-n0 11483  df-z 11568  df-uz 11878  df-fz 12518  df-fzo 12658  df-hash 13310  df-word 13483  df-concat 13485  df-s1 13486  df-s2 13791  df-s3 13792  df-s4 13793  df-edg 26137  df-uhgr 26150  df-wlks 26703  df-trls 26797  df-pths 26820  df-cycls 26891 This theorem is referenced by:  umgr3cyclex  27333
 Copyright terms: Public domain W3C validator