MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr3cyclex Structured version   Visualization version   GIF version

Theorem uhgr3cyclex 26908
Description: If there are three different vertices in a hypergraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 12-Feb-2021.)
Hypotheses
Ref Expression
uhgr3cyclex.v 𝑉 = (Vtx‘𝐺)
uhgr3cyclex.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgr3cyclex ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem uhgr3cyclex
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uhgr3cyclex.e . . . . . . 7 𝐸 = (Edg‘𝐺)
21eleq2i 2690 . . . . . 6 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺))
3 eqid 2621 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
43uhgredgiedgb 25916 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))
52, 4syl5bb 272 . . . . 5 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))
61eleq2i 2690 . . . . . 6 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ (Edg‘𝐺))
73uhgredgiedgb 25916 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ (Edg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)))
86, 7syl5bb 272 . . . . 5 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)))
91eleq2i 2690 . . . . . 6 ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐶, 𝐴} ∈ (Edg‘𝐺))
103uhgredgiedgb 25916 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐶, 𝐴} ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)))
119, 10syl5bb 272 . . . . 5 (𝐺 ∈ UHGraph → ({𝐶, 𝐴} ∈ 𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)))
125, 8, 113anbi123d 1396 . . . 4 (𝐺 ∈ UHGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))))
1312adantr 481 . . 3 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))))
14 eqid 2621 . . . . . . . . . . . . . 14 ⟨“𝐴𝐵𝐶𝐴”⟩ = ⟨“𝐴𝐵𝐶𝐴”⟩
15 eqid 2621 . . . . . . . . . . . . . 14 ⟨“𝑖𝑗𝑘”⟩ = ⟨“𝑖𝑗𝑘”⟩
16 3simpa 1056 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐵𝑉))
17 pm3.22 465 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐶𝑉) → (𝐶𝑉𝐴𝑉))
18173adant2 1078 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐶𝑉𝐴𝑉))
1916, 18jca 554 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐴𝑉)))
2019adantr 481 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐴𝑉)))
2120ad2antlr 762 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐴𝑉)))
22 3simpa 1056 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐴𝐶))
23 necom 2843 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵𝐵𝐴)
2423biimpi 206 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐵𝐵𝐴)
2524anim1i 591 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵𝐵𝐶) → (𝐵𝐴𝐵𝐶))
2625ancomd 467 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵𝐵𝐶) → (𝐵𝐶𝐵𝐴))
27263adant2 1078 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐵𝐶𝐵𝐴))
28 necom 2843 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐶𝐶𝐴)
2928biimpi 206 . . . . . . . . . . . . . . . . . 18 (𝐴𝐶𝐶𝐴)
30293ad2ant2 1081 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐶𝐴)
3122, 27, 303jca 1240 . . . . . . . . . . . . . . . 16 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐴) ∧ 𝐶𝐴))
3231adantl 482 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐴) ∧ 𝐶𝐴))
3332ad2antlr 762 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐴) ∧ 𝐶𝐴))
34 eqimss 3636 . . . . . . . . . . . . . . . . . 18 ({𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
3534adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
36353ad2ant3 1082 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
37 eqimss 3636 . . . . . . . . . . . . . . . . . 18 ({𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
3837adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
39383ad2ant1 1080 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
40 eqimss 3636 . . . . . . . . . . . . . . . . . 18 ({𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘))
4140adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘))
42413ad2ant2 1081 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘))
4336, 39, 423jca 1240 . . . . . . . . . . . . . . 15 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘)))
4443adantl 482 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗) ∧ {𝐶, 𝐴} ⊆ ((iEdg‘𝐺)‘𝑘)))
45 uhgr3cyclex.v . . . . . . . . . . . . . 14 𝑉 = (Vtx‘𝐺)
46 simp3 1061 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐶𝑉)
47 simp1 1059 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴𝑉)
4846, 47jca 554 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐶𝑉𝐴𝑉))
4948, 30anim12i 589 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐶𝑉𝐴𝑉) ∧ 𝐶𝐴))
5049adantl 482 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ((𝐶𝑉𝐴𝑉) ∧ 𝐶𝐴))
51 pm3.22 465 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗))))
52513adant2 1078 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗))))
5345, 1, 3uhgr3cyclexlem 26907 . . . . . . . . . . . . . . . 16 ((((𝐶𝑉𝐴𝑉) ∧ 𝐶𝐴) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)))) → 𝑖𝑗)
5450, 52, 53syl2an 494 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑖𝑗)
55 3simpc 1058 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐵𝑉𝐶𝑉))
56 simp3 1061 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐵𝐶)
5755, 56anim12i 589 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶))
5857adantl 482 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶))
59 3simpc 1058 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))))
6045, 1, 3uhgr3cyclexlem 26907 . . . . . . . . . . . . . . . . 17 ((((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶) ∧ ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑘𝑖)
6160necomd 2845 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐶𝑉) ∧ 𝐵𝐶) ∧ ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑖𝑘)
6258, 59, 61syl2an 494 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑖𝑘)
6345, 1, 3uhgr3cyclexlem 26907 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)))) → 𝑗𝑘)
6463exp31 629 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴𝑉𝐵𝑉) → (𝐴𝐵 → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
65643adant3 1079 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝐵 → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
6665com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵 → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
67663ad2ant1 1080 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘)))
6867impcom 446 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘))
6968adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → 𝑗𝑘))
7069com12 32 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘))) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → 𝑗𝑘))
71703adant3 1079 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → 𝑗𝑘))
7271impcom 446 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝑗𝑘)
7354, 62, 723jca 1240 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → (𝑖𝑗𝑖𝑘𝑗𝑘))
74 eqidd 2622 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → 𝐴 = 𝐴)
7514, 15, 21, 33, 44, 45, 3, 73, 743cyclpd 26905 . . . . . . . . . . . . 13 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → (⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩ ∧ (#‘⟨“𝑖𝑗𝑘”⟩) = 3 ∧ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴))
76 s3cli 13562 . . . . . . . . . . . . . . 15 ⟨“𝑖𝑗𝑘”⟩ ∈ Word V
7776elexi 3199 . . . . . . . . . . . . . 14 ⟨“𝑖𝑗𝑘”⟩ ∈ V
78 s4cli 13563 . . . . . . . . . . . . . . 15 ⟨“𝐴𝐵𝐶𝐴”⟩ ∈ Word V
7978elexi 3199 . . . . . . . . . . . . . 14 ⟨“𝐴𝐵𝐶𝐴”⟩ ∈ V
80 breq12 4618 . . . . . . . . . . . . . . 15 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → (𝑓(Cycles‘𝐺)𝑝 ↔ ⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩))
81 fveq2 6148 . . . . . . . . . . . . . . . . 17 (𝑓 = ⟨“𝑖𝑗𝑘”⟩ → (#‘𝑓) = (#‘⟨“𝑖𝑗𝑘”⟩))
8281eqeq1d 2623 . . . . . . . . . . . . . . . 16 (𝑓 = ⟨“𝑖𝑗𝑘”⟩ → ((#‘𝑓) = 3 ↔ (#‘⟨“𝑖𝑗𝑘”⟩) = 3))
8382adantr 481 . . . . . . . . . . . . . . 15 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → ((#‘𝑓) = 3 ↔ (#‘⟨“𝑖𝑗𝑘”⟩) = 3))
84 fveq1 6147 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩ → (𝑝‘0) = (⟨“𝐴𝐵𝐶𝐴”⟩‘0))
8584eqeq1d 2623 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩ → ((𝑝‘0) = 𝐴 ↔ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴))
8685adantl 482 . . . . . . . . . . . . . . 15 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → ((𝑝‘0) = 𝐴 ↔ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴))
8780, 83, 863anbi123d 1396 . . . . . . . . . . . . . 14 ((𝑓 = ⟨“𝑖𝑗𝑘”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶𝐴”⟩) → ((𝑓(Cycles‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴) ↔ (⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩ ∧ (#‘⟨“𝑖𝑗𝑘”⟩) = 3 ∧ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴)))
8877, 79, 87spc2ev 3287 . . . . . . . . . . . . 13 ((⟨“𝑖𝑗𝑘”⟩(Cycles‘𝐺)⟨“𝐴𝐵𝐶𝐴”⟩ ∧ (#‘⟨“𝑖𝑗𝑘”⟩) = 3 ∧ (⟨“𝐴𝐵𝐶𝐴”⟩‘0) = 𝐴) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
8975, 88syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) ∧ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
9089expcom 451 . . . . . . . . . . 11 (((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) ∧ (𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖))) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
91903exp 1261 . . . . . . . . . 10 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ {𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗)) → ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9291rexlimiva 3021 . . . . . . . . 9 (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9392com12 32 . . . . . . . 8 ((𝑘 ∈ dom (iEdg‘𝐺) ∧ {𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9493rexlimiva 3021 . . . . . . 7 (∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9594com13 88 . . . . . 6 ((𝑖 ∈ dom (iEdg‘𝐺) ∧ {𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖)) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → (∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
9695rexlimiva 3021 . . . . 5 (∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) → (∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) → (∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))))
97963imp 1254 . . . 4 ((∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
9897com12 32 . . 3 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → ((∃𝑖 ∈ dom (iEdg‘𝐺){𝐴, 𝐵} = ((iEdg‘𝐺)‘𝑖) ∧ ∃𝑗 ∈ dom (iEdg‘𝐺){𝐵, 𝐶} = ((iEdg‘𝐺)‘𝑗) ∧ ∃𝑘 ∈ dom (iEdg‘𝐺){𝐶, 𝐴} = ((iEdg‘𝐺)‘𝑘)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
9913, 98sylbid 230 . 2 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴)))
100993impia 1258 1 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wne 2790  wrex 2908  Vcvv 3186  wss 3555  {cpr 4150   class class class wbr 4613  dom cdm 5074  cfv 5847  0cc0 9880  3c3 11015  #chash 13057  Word cword 13230  ⟨“cs3 13524  ⟨“cs4 13525  Vtxcvtx 25774  iEdgciedg 25775  Edgcedg 25839   UHGraph cuhgr 25847  Cyclesccycls 26549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-concat 13240  df-s1 13241  df-s2 13530  df-s3 13531  df-s4 13532  df-edg 25840  df-uhgr 25849  df-wlks 26365  df-trls 26458  df-pths 26481  df-cycls 26551
This theorem is referenced by:  umgr3cyclex  26909
  Copyright terms: Public domain W3C validator