![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgredgiedgb | Structured version Visualization version GIF version |
Description: In a hypergraph, a set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) |
Ref | Expression |
---|---|
uhgredgiedgb.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgredgiedgb | ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgredgiedgb.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | uhgrfun 26006 | . 2 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
3 | 1 | edgiedgb 25992 | . 2 ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
4 | 2, 3 | syl 17 | 1 ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 dom cdm 5143 Fun wfun 5920 ‘cfv 5926 iEdgciedg 25920 Edgcedg 25984 UHGraphcuhgr 25996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-edg 25985 df-uhgr 25998 |
This theorem is referenced by: usgredg2vtxeuALT 26159 vtxduhgr0nedg 26444 umgr2wlk 26914 1pthon2v 27131 uhgr3cyclex 27160 |
Copyright terms: Public domain | W3C validator |