MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgredgn0 Structured version   Visualization version   GIF version

Theorem uhgredgn0 26905
Description: An edge of a hypergraph is a nonempty subset of vertices. (Contributed by AV, 28-Nov-2020.)
Assertion
Ref Expression
uhgredgn0 ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))

Proof of Theorem uhgredgn0
StepHypRef Expression
1 edgval 26826 . . 3 (Edg‘𝐺) = ran (iEdg‘𝐺)
2 eqid 2819 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2819 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3uhgrf 26839 . . . 4 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
54frnd 6514 . . 3 (𝐺 ∈ UHGraph → ran (iEdg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))
61, 5eqsstrid 4013 . 2 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))
76sselda 3965 1 ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2108  cdif 3931  c0 4289  𝒫 cpw 4537  {csn 4559  dom cdm 5548  ran crn 5549  cfv 6348  Vtxcvtx 26773  iEdgciedg 26774  Edgcedg 26824  UHGraphcuhgr 26833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-edg 26825  df-uhgr 26835
This theorem is referenced by:  edguhgr  26906  uhgredgss  26908  uhgrvd00  27308  lfuhgr2  32358  loop1cycl  32377
  Copyright terms: Public domain W3C validator